magnesium, and potassium may be found naturally in the water due to the nature of the soil material in and around Naylors Run.

As shown by Figure 6-1, the greatest concentration of total dissolved selected metals, consisting of arsenic, cadmium, chromium, copper, lead, and zinc, was detected at surface water location SW-1. From the data presented in Figure 6-1, there does not appear to be a particular pattern of distribution of the selected metals in the surface water samples taken at Naylors Run.

Volatile organic compounds including benzene, toluene, xylene, 1,1,1-trichloroethane, and trichloroethene were detected in those surface water samples collected downstream (surface water samples SW-1 to SW-5) of the storm water outfall. These compounds were not detected in samples which were collected above the storm water outfall (SW-6 to SW-10). Concentrations of volatile organic compounds which were detected in samples collected above the storm sewer outfall were chloroform and bromodichloromethane. These results shown in Table 6-3 indicate that the majority of volatile compounds in Naylors Run may be entering the stream from or near the 36-inch storm sewer pipe. Figure 6-2 shows the total concentrations of volatile compounds which were detected at each sampling location. Again, it is apparent that the majority of VOAs were detected in samples SW-1 through SW-5, with the greatest concentrations detected immediately at the storm sewer pipe in sample SW-5. The presence of VOAs in samples SW-6 through SW-10 may be indicative of sources other than the subsurface fuel oil.

r.e. wright as Celates, inc.

Table 6-3

### 13034 15	- .	I'-#S 3 MAINS INCIDE		Suary 医-2-15 Su-2-15		E-35		i		. S.		= <u>1</u>	多多	· ^-
13004 1430	•			07/24/80 0		03/24/87	1110	<i>(4/)</i>	2110	5° 3	03/24/80	2 • 1	01/2/10	· 1
BOX 5.0 ug/r 1.7	W.0.C. LAB	ŧ		920C) I		970C11	1430	i =	PC3	i .	143050	E .	ISOCH I	E
BML 5.0 ug/f 1 BML 5.0		1		- C	1/401			, m	ii		# 2	•	2	•
600, 5.0 ug/r 1.7 ug/r 800, 5.0 ug/r 801, 10 ug/r 80	3			2		-		/0x 0 %	` Æ	•	臺		a	9
801, 5,0 ug/7	RIN TET IDAM IN NOTINE			<u> </u>		. =		5.0 44		: 옥	E		ž	•
BOL 5.0 usy1 BOL 10 usy1 BOL 5.0 usy1			/on e.	3	/07 0	-		9		•	富	9	霊	•
BOL 10 ug/ BOL 10 ug/	CHAILM.		/en e.	3		9		•		ó	蓋	9	藍	9
BOL 10 ug/l BOL 5.0 ug/l BOL <th></th> <td></td> <td>10 Mg/</td> <td>薑</td> <td>1/6m 01</td> <td>으</td> <td></td> <td>2</td> <td></td> <td>2</td> <td>意</td> <td>2</td> <td>줊</td> <td>2</td>			10 Mg/	薑	1/6m 01	으		2		2	意	2	줊	2
901. 5.0 ug/1 801. 5.0	OF THYL WINTH ETHER	200	/bn 01	8	10 mg/]	오		오		_	喜	2	₹	2
601 5.0 ug/1 804 10 ug/1 804 10 ug/1 804 5.0 ug/1 804 10 ug/1 804 804 804 10 ug/1 804		90%	.0 uq/	E	1/60 0.	٠,		÷		÷	<u>:</u>	8	<u></u>	_
BOL 5.0 ug/l BO	Ca DROWTHAME	36	1/6m 0:	8	- N	믁		e.		ó	줉	o,	蓋	•
BOL 5.0 ug/l BO	THE CHEST PLANE	200	[/bii 0.	3	/ba 0.	۳.		=		ę	盈	é	륦	ę
BOL 5.0 ug/1 BO	THE CHOICE THANK		/on 07	蓋	1/6# 0	9		٠.		~	鼋	ė.	藍	ė
BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL BOL 10 ug/1 BOL 10 ug/1 BOL 10 ug/1 BOL 10 ug/1 BOL BOL 10 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL 5.0 ug/1 BOL BOL 5.			/0 no/	8	/ma 0	۳.		9	_	e.	蠹	é	臺	ė
B01 5.0 ug/1 B0L 10 wg/1 B0L 2.0 mg/1 B0L 2.0 mg/1 B0L 2.0 mg/1 B0L 2.0 mg/1 B0L 2.0 mg/1<	THE CHARGE STREET		1/BH 0	2	[/en 0.	ب		٠.		₽.	盏	6	æ	e
BOX. 5.0 ug/l BOX. 5.0 ug/l BOX. 5.0 ug/l BOX. 10 ug/l <th< td=""><th>-BICH DEPROPERE</th><td>568</td><td>/ba 0.</td><td>富</td><td>1/bn 0.</td><td>٠.</td><td></td><td>~</td><td></td><td>9</td><td>룗</td><td>ė</td><td>훒</td><td>e.</td></th<>	-BICH DEPROPERE	568	/ba 0.	富	1/bn 0.	٠.		~		9	룗	ė	훒	e.
BOL 10 ug/l BOL 10 ug/l <th< td=""><th>■7.E美</th><td>5</td><td>1/gn 0.</td><td>E</td><td>1/6m 0.</td><td>٦,</td><td></td><td>۳.</td><td></td><td>á</td><td>鼋</td><td>è</td><td>蓋</td><td>e.</td></th<>	■7.E美	5	1/gn 0.	E	1/6m 0.	٦,		۳.		á	鼋	è	蓋	e.
801, 10 ug/l 801,	3761		10 Mg/l	3	10 mg/1	=		2	_	2	藍		줊	2
8.4 8 ug/l 3.6 18 ug/l 2.9 18 ug/l 2.5 18 ug/l 1.7 80t 5.0 ug/l 80t 5.		2	10 to	룶	10 ug/l	=		=		2	E	9	藍	2
80L 5.0 ug/1 80L 80L 80L 80L 80L 80L 80L	E CHORIDE	9.	B #9/1	3.6	B 49/1	æ		8		•	5.1	#	1.5	æ
BOL 5.0 ug/l BO	- TE TRACHLORDE THANE	991.5	.0 ug/i	98 S	0 ug/	0		0		9	쯢	0	Ē	e
BOL 5.0 ug/l BOL 5.0 ug/l<	LORDETHEM	804 5	.0 eg/l	200	.0 ug/l	Θ.		•		Ġ	臺	e	줊	Ó
800. 5.0 ug/f 800. 5.0 ug/f 801. 5.0 ug/f 802. 5.0 ug/f 801. 5.0 ug/f 802. 5.0 ug/f 801. 5.0 ug/f 802. 5.0 ug/f 801. 10 ug/f 801. 10 ug/f 801. 10 ug/f 801. 5.0 ug/f 801. 10 ug/f 801. 10 ug/f 801. 10 ug/f 801. 10 ug/f 801. 5.0	-	800, 5	.0 ug/l	<u>즉</u>	.0 ug/l	•		•			쯢	ė	줊	9
1.6 Jug/l 1.7 Jug/l 2.3 Jug/l 2.5 Jug/l 600. BDL 5.0 ug/l 801. 5.0 ug/l 801. 5.0 ug/l 801. 5.0 ug/l 801. 10 ug/l 801. 5.0 ug/l 801. 10 ug/l 801. 5.0 ug/l 801. 10 ug/l	,2-DICH, ORDETHENE	BOC 5	.0 ug/i	<u>8</u>	,0 wg/i	6		ö			ğ	ø	36	ē
BDK 5.0 ug/ BDK 5.0 ug/ BDK 5.0 ug/ BDK 5.0 ug/ BDK 1.0 ug/ BDK	RICHLORDE THERE	9'l	J ug/	2	J und/	-		_		ė	줖	6	蓋	0
1.8 1 ug/l 2.1 J ug/l 3.3 J ug/l 3.0 J ug/l 16 BDL 10 ug/l BDL 5.0 ug/l BDL 10 ug/l	R TCHLOROE THANE	S 会	.0 ug/i	₩ ₩	.0 ug/l	ė		ė		9	줖	é	震	e
BDL 10 ug/l BDL 10 ug/l BDL 10 ug/l BDL BDL 5.0 ug/l BDL 5.0 ug/l BDL 5.0 ug/l BDL 10 ug/l BDL BDL 5.0 ug/l BDL 10 ug/l B	ROE THEFE	æ. -] mg/	7.7) ug/	•		_			藍	e	줊	9
BOL 5.0 ug/1 BOL 10 ug/1	F. C. C. C.	盖	[/6n 0]	爱	10 mg/]	9		9		2	룚	9	a	2
80t. 5.0 ug/ 80t. 5.0 ug/ 60t. 5.0 ug/ 60t. 5.0 ug/ 60t. 10 ug/ 60t. 5.0 ug/ 60t. 5.0 ug/ 60t. 5.0 ug/ 60t. 10 ug/ 60t.	,3-DICHLOROPROPENE	35 5	.0 ug/}	<u>8</u>	.0 ug/l	9		o.		e.	룚	ė	氢	ė
16		90f. S	.0 ug/l	<u>e</u>	,0 mg/l	•		•		á	8	0	8	0
BDL 10 ug/l BDL 5.0 ug/l BDL 5.0 ug/l BDL 5.0 ug/l BDL 5.0 ug/l BDL 10 ug/		91	ng/l	蓋	10 mg/l	•		≘			룚	•	ਛ	0
	E		[/6n 01	줊	1/6m e4	9		9		9	줊	•	æ	0
	DISOLETOE		.0 ug/l	≅	[/6a o	₹.		0		ë	藍	•	叠	•
######################################	葁		10 ug/1	ē	1/6# 0/	9		2		2	藍	0	쿒	9
80t 10 ug/l 80t 10 ug/l 80t 10 ug/l 80t 10 ug/l	L-2-PENTANONE		10 ug/l	줊	10 ug/1	9		9		1/6m 01 1	줊	10 mg/l	藍	10 vg/1
	CETATE		1/6n 01	쯢	1/6m 0:1	0		2		≘	8	•	Ē	•
1/5m b1 1/5n 77 1/5n c1 1/5n c /-t	(101AL)		3 ug/l	<u>e</u>	1/60						줊	0	舙	0

r.e. wright associates, inc.

Table 6-3 (Cont'd)

Surface Water Volatile Organic Results

	;		5.0 mg/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	/6n e	/g 2	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0.ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	10 mg/1	10 mg/	1/60 B- (5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 mg/l	/gn 01	5.0 ug/l	5.0 ug/l	/6n 01	10 ug/1	5.0 t/g/l	10 ug/	10 ag/l	1/5m 01	5.0 ug/l
86021 SURF WAT SW-10 07/24/87 0	163055		줊	盖				a	e E	8			ğ	色	<u> </u>	8	2	줊	\$	1.2	Ē	6	E	Ē	æ	E	\$			鼋	Ē	章	ਛ	룚	æ	章 :	ន
	•		5.0 ug/l	5.0 49/	5.0 vg/l	5.0 ug/l	5.0 ug/l	1/6n 01	10 mg/l] · mg/.]	/6n	5.0 ug/]	5.0 ug/l	5.0 ug/l	1/6n 0.2	5.0 ug/l	5.0 mg/l	10 ag/l	10 mg/l	3 8 ug/l	5.0 ug/l	5.0 ug/]	5.0 ug/l	5.0 mg/]	5.0 mg/l	5.0 mg/	5.0 44/	10 mg/	5.0 ug/l	5.0 ug/	1/6n 01	10 49/	5.0 tg/l	10 09/	10 mg/t		5.0 ug/l
86021 SURE LAT SH-9 DUP 07/24/87	143054	Ĭ	룛	盈	종 -	8	ਛ	E	룡	2.3	₹ :	Ē	툪	當	æ æ	墓	意	2	3	9.1	\$	룚	\$	줊	番	품	줖	富	z Z	ਛ	ਛ	E	룖	8	를	æ :	8
	•		5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 09/	~		=) ug/l	~	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l		10 ug/l	10 ug/l	J B ug/l	5.0 ug/1	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	76n os	5.0 ug/l	5.0 ug/]	10 ug/1	10 ug/	5.0 ug/l	1/6n of	10 ug/l	1/6n 01	5.0 ug/l
86021 SURF WAT SW-9 07/24/87	143053		æ	줊	풀	叠	쿒	2	翻	2.2	9.1	8	8	2	哥	E	蠹	2	룖		ਛ	8	ਛ	蓋	종		&	鼋	ਛੱ	E	룚	8	æ	20	8	ස් i	뤁
			5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/]	5.0 ug/l	10 ug/l	1/6n 01) ug/l	J ug/i	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	5.0 ug/l	10 10	10 mg/l] B #g/]	5.0 ug/l	5.0 ug/l	5.0 49/	5.0 ug/l	5.0 ug/l	5.0 ug/i	5.0 mg/l	/ Bin 02	5.0 ug/l	5.0 ug/l	/함 e	10 mg/	5.0 49/	10 ug/	10 ug/1	1/6n 01	5.0 ug/i
86021 SURF LAT SU-8 07/24/87	250871		幺	룚	룚	쯢	ස්	8	藍	<u>-</u>	1.2	E	줖	夏	豎	E	魯	豎	\$	2.4	豎	富	翻	s s	표	E	ਛਂ : -	₹.	룚	줎	3	盖	蓋	2	盏	高	<u>e</u>
SITE POINT SANPLE DATE DEPTH	0.01.049.10.0								æ					,		监					**E			뚪					*								
	_	7 11	w	FORM	CARBON TETRACHLOR1DE	CHLOROBENZENE) I BRONDCIAL ORONE THANE	CHE ORDE THANE	-CHLOROETHYLVINYLETHER	E CROF ORM	SECONDO I CHILOROPEE THANE	, I -DICHE ORDE THANE	,2-DICHLOROETHANE	, 1-DICHLOROETHENE	2-DICHLOROPROPANE	15-1,3-DICHLOROPROPEME	THYLBENZENE	SROHOWE THANE	HLORONE THAME	ETHYLENE CHLORIDE	,1,2,2-TETRACHEOROETHANE	ETRACHLORDETHENE	₩.	RANS-1,2-DICH ORDET用用	, 1 , 1 - FRICHLOROE THANE	, I, 2-IRICHLOROE INME	RICHLOROETHENE	JIMIL CHLORIDE	RANS-1,3-DICHLOROPROPENE	₩!	س	ANOWE	MARBON DISECTION	AND AL	- NETHYL -2-PENTANONE	JINN. ACETATE	IYLEMES (TOTAL)
	CIAPO CL. CIAPO-DESC		BENZENE	BROMOF ORM	-	_	DIBRO	_	~	_	_	_		_	_	_	w		CHLORE	E134	1,1,2	TETRA	TOLUE ME	TRANS.	<u></u>	1,1,2			TRAMS	STYRERE	ACE TONE	2-BUTANONE	CARBO	2-IEXANDAE	- 발	VINT	AYLEM
	645 645		203 ₩	₹05.₩	206 €	<u>7</u> 02	288	<u>~</u>	210 4	211 ₩	212 V	214 6	215 ₩	216 V	217 ₩	218 4	219 V	220	≜ 122	222	£22	224 W	222 ₩	% ≈	227 V	228	228	7	> 052 220	- - - -	252 4	233	254 W	255 ₩	22¢ ←	257	289 V

The base neutral/acid extractable compound which was consistently detected in surface water samples at elevated concentrations was pentachlorophenol, with lesser amounts of acenaphthene, anthracene, fluorene, phenanthrene, 2, methylnaphthalene, 2,4-dichlorophenol also detected. PCP was only found above detection limits in surface water samples collected from below the storm water discharge pipe, SW-1 through SW-5, with the greatest concentration detected in SW-5 at a level of 660 ug/l. Detection limits at sampling locations above the storm sewer outlet were relatively high (100 ug/l) so the presence of PCP at these locations should not be ruled out. Table 6-4 contains the results of the base neutral and acid extractable analysis. compound PCP was useful in ascertaining the extent of contamination from NWP because of its use as a wood preserving agent at the site for many years. Figure 6-3 presents the distribution of PCP in the surface waters of Naylors Run.

Pesticides and polychlorinated biphenols (PCB) analyses were completed on the 10 surface water samples. The concentrations of these contaminants were below detection levels in all surface water samples, as illustrated by Table 6-5. Also included on this table are the results of cyanide analysis. Cyanide levels were below detection limits in all samples except for SW-10, which contained 10 ug/l of cyanide.

Samples for dioxin and dibenzofuran were analyzed for total tetra- through octa-chlorinated dibenzodioxins and dibenzofurans. The toxicity equivalent factor (TEF) was calculated by EPA Region III to assess the results of the dioxin analysis, assuming the results were due to the 2,3,7,8-tetrachlorinated dioxin isomer. If the TEF was greater than one part per billion, a second analysis was completed to identify the specific dioxin and

clates, inc. r.e. wrightas

Surface Water Base Weutral/Acid Extractable Results Table 6-4

	٠		2			5 7																		1/64		_	7	_						
12 SE -7 SE	==					e s e s																												
12090 1901-2/18 1905 1907-2/18	13051	11 2	5 2	3 2	a5 i	5 8	5 3	*	*	&	&	*	;	45 :	# 1	25 i		a	æ i	55 6	85 E	5 25	3 5	₩.	25	*	æ							
				/ ·	7 ·	- - - - - - - - - - - - - - - - - - -	1/9	79.0	1/60 0	[/6# 0	1/6n 0	1/64 0	/6a 0	704 0	763	/6A 0	<u> </u>	1/6a 0	[/ea/	7/6	1/67	/on 0	1/an 0				76 • • • • • • • • • • • • • • • • • • •							
120 140 140 140 140 140 140 140 140 140 14	143050					e e																												
## /£	₹	64 64																																
			_		₹ 2:	了 空 完 完 完	\$ \frac{1}{2}				20 EG/	769 R	7 m 2 m	} R	7 2 2	₹ 8:	1/6# PZ	70 Mg/1	7 8 8		7 2 2 8 8	7 P				20 ¥9/l								
5-18-5 5-18-5 5-18-5 64-724/87	143049		•	ž I	a	g 3	i S	=	\$	8	Ē	蓋		E	翻	E	蠹	蓋	重	E		É	畜	a	3.0	ž	줖	Ē						
		7		Ž.	<u> </u>	<u> </u>	<u> </u>	7	<u>~</u>	I/6/	J/6/	<u></u>	<u>}</u>	<u></u>	7	<u></u>	<u>~</u>	[/6i	1/6	<u> </u>	76	7/2	/0	7	- T-	- T	<u>76</u>	1/b						
REIR'S	_		R 8	2 8	₹ :	₹ \$	2 5	8	急	೩	2	2	2	₹	2	₽ :	2	2	2	₹ :	3,9	3 \$	2	2	8	2	2	Ŕ						
45 6 28/72/20 7-75 1981-3865	14304	1111	S 3			로 3	E E		2	2	蓋	2	2	æ	æ :	爱	Ž.	훒	Æ ;	S	E 3	Ē	2	\$	\$	***	a	2						
			\ \ \ \ \ \ \ \ \ \			/ 2 2																			[/b# 0									
52067 18A1 524-3 524-3 67/24/67	990CF1	-		_		2 2 2					• -	•		• •			-							•				• -						
25 /ce	=	;;																																
		1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$:	₹ 2 5	2	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	76m ₽	1/59 07	/6a @	40 119/1	76n €					1/6a Q			7 m q		() () () () () () () () () ()			1/68 04	1/6# D)	40 ug/!						
SUPE WIT SUPE WIT SUP-2 007724/87	900CF1		E 3	E 3		z 8		E	爱		æ	줊	氢	ਛ	E	Æ	줖	줖	E	E	E 8	E S	E		퓵	æ	鼍	줖						
							<u> </u>							- Z	<u>1/6</u> 1	75	1/60	1/6 #	<u> </u>	<u>- 69</u>	7		7 6					- 1/5m						
250-1 250-1	馬					2 2																												
2/16	961	***	4 6 (oo i	.	₩ 6	- C	. 00	. 60	4		•	•	20	∞ :	-	æ	.	⇔ i		as ē	. 6	. æ	·as	-	. 65	40	40						
SAMPLE SAMPLE DATE DEPTH	2	19 17 18 18 19																																
_	CMPD-DESC ACID EXTRACT/ DASE NEUT. LAB 1D	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								第15年	TEC.) ETHER	MATE				ENER		LJ.			ų	į											
	- XX	1				₩ ₩		187 F. W.	¥1.	BIS(-2-CH,ORDETHOXY) RETHAKE	BIS (-2-CHLOROETHYL)ETHER	815(2-CH.OROISOPROPTI,)EIHER	BIS 2-ETHYLHEXTL PHTHALATE	4-BEOTOPERIT - PAENT ETER	TALATE	11 EE	4-C法OROPIENT -PIENT ETHER		FRACES	ENZENE	SM2ENE	1,4-01CMLURUBERICME 3,2*-NICH RESERVINIME	11 TE 101	KATE	MAIF	UENE.	CER	HARATE						
	-DESC Cateroct	***************************************		CERPHIEN EN	<u></u>	DEHZO(A)ANTHRACEME	DERICO, A POSSEDO DE MODA (SEO INDEADORE)	BCH70(6, H. 1 bys grape	BENZOLK FLUDRANTSENE		CH ORO	CHE OROTI	ETHTLE	PHENT	BUTTLEENZTLPHTHALATE	2-CIELOROMAPHITALIERE	ROPHENT	پي	DIOCHZ(A,H)ANTHRACEM	1,2-DICHLOROBENZENE	I,3-DICH,OROBENZENE	IFUE DOOR	DIFTHY PHIMA AT	DINETHIL PHTHALATE	DI - K-BUTTI PHITAN ATE	2,4-01N(TROTOLUENE	2,6-DINTIROTOLUCINE	TYL PH						
	CHPO CL. CHPO-DESC Acto extra		ACE MAPPINE M	*CE		02W30	F. 10.5	BEN706	96,070	B1S(-5	B15(-5	BIS(2-	B15(2-1	100		2-CIE 0	-C¥0	CHASER	016642	1,2-01	E-6-1	3 2 - 2 - 2	DIFTEN	E 1	H-W-	2,4-011	2.4-01	129 TEM - N-OCTYL PHINALATE	n	73	•	n	. 1	•
•	8	;		8 20 30 30 30 30 30 30 30 30 30 30 30 30 30	<u> </u>	\$ \$			5	410 B	##	412 B									421 121 121 121 121 121 121 121 121 121	22			B 707	- Z	428 B	E P	R	<u>ئ</u>	Ü	U	3	4

r.e. wright associates, inc.

	INIO	SURF WAT	TAN TANK	SURF WAT	TAN TAUS	86021 SURF UAT	86021 SURF WAF	86021 Surf Wat	
C. CREP-LESC CREAT BASK REIT, LAB 10 9 140334 143344 143046 143	DATE DATE OFPIE	07/24/87 0 0	7-WC 0 0 0 0	5**-3 07/24/87 0	07/24/87 0	54-5 07/24/87 0	5-#5 07/24/87 0	54-7 07/24/87 0	
FILTINGENITY BASE NETH: LAB D 142034 142		£	5	Ē	5	E		S.	
B FLORGERITHME B FLORGERITHM	ACID EXTRACT/ BASE WEUT. LAB 10 \$	143034	143036	143046	143048	143049	143050	143051	•
F. CLONGENE St. 20 ug/1 St. 40 ug/1 St. 20 ug/1		5	9	8	8	8	8	۶	_
R. F.A.CH ROBGENTEKE BIG 20 ug/1 BIG 10 ug/1 BIG 20 ug/1 BIG 2	EI INDERE	7	\$	Ē	8	-		? 5	
F. K.A.C. GROSEL HALLINE BOL 20 ug/1 BOL 40 ug/1 BOL 20 ug/1 B	HE YACHE DROBE WITH THE	2 8	\$	2	2 2	8	2 2	2 8	_
RETACH CONCINENT BOX 20 way BOX 40 way BOX 20 wa	HCXACH ORDS/TAD/FIRE	2	\$	2	2	2	2	2	
B. NOCHOL FINNEE BOL 20 ug/J BOL 40 ug/J BOL 20 ug	HEXACH, DROCYCL OPENTADIENE	2	\$	2	2	2	2	8	
Bulliance Bull	HEXACH ORDETHANE	2	\$	ຂ	2	ຂ	2		
SCRIPHORDER SOL 20 ug/1 SOL 40 ug/1 SOL 20 ug/1	INDENO(1,2,3-CD)PTRENE	2	\$	2	2	2	2	2	_
B. B. C. C. G. G. C. G. G. C. G. G	1SOPHORONE	R	\$	2	2	2	R	2	_
No. 10 N	MAPHIHALENE	2	\$	≅	2	2	2	2	
8 H-HITROSA-D1-N-PORTIANINE	MITROBENZEME	2	\$	ຂ	2	2	2	R	
P. FIRTRICKONDPRENTIAMINE 1	M-W1140SO-01-K-PROPYLANIME	ຂ	\$	2	2	2	2	R	_
PHERMETHREEKE 800, 20 ug/1 801, 40 ug/1 801, 20 ug/1 801	H-MITROSODIPHENTLANINE(1)	ຂ	\$	ຂ	೫	2	R	8	_
Pyteric Pyte	PPERAMITHER	Ŕ	육	2	2	_	2	2	=======================================
1.2.4-TRICHE GROSE WEEKER 801. 20 ug/1 801. 40 ug/1 801. 20 ug/1 801. 2	PYRE	2	\$	2	2	8	೭	2	_
B	1,2,4-TRICHLOROBENZEME	2	2	2	2	R	2	2	.
1	BEKZYL ALCOHOL	2	\$	2	2	_	2	2	_
FURNAL FURNAL	4-CHLORDANIL INE	2	\$	R	2	R	2	2	<u> </u>
MANITAMENIE BOL 20 ug/1 BOL 40 wg/1 2 3 ug/1 BOL 20 ug/1 BOL 40 wg/1 BOL 100 ug/1 BOL 20 ug/1	DIBENZOFURAN	ਣ :	\$	≅ '	ଛ :	، ھب	R	2	<u> </u>
MAIL ME	2-NETHYLKAPHTHALENE	2	\$	-	2	7	2	2	:
MANILINE BOX 100 ug/1 BOX 200 ug/1 BOX 100 u	2-NI FROMILLIME	2	8	8	2 5	2	2	8 9	
Comparison		3 9	3 8	3 €	3 8	3 5	3 5	3 8	
FINAL PREMIULE BOX 20 ug/1 BOX 40 ug/1 BOX 20 ug/1 BOX 100 ug/1 BOX 20 ug/1 BOX 100 ug/1 BOX 20 ug/1 BOX 2	4-FELIKUMATILIME 2-FELIKUMATILIME	3 8	§ \$	3 8	3 8	3 8	601 20 mg/1	FOT 20 mg/1	
FINTEPERMUL BOX 20 ug/1 BOX 100 ug/1 BOX 20 ug/1 BOX	2.4-DICH DROPHEN	2 8	\$	2 2	2 2	7	2	2	
11760-2-WETHYLPHENOL	2,4-DINETHYLPIENOL	2	\$	28	R	2	2	2	
1180PHKNOL	4,6-DINITRO-2-METHYLPHENDL	8	200	8	8	8	2	훒	
PHENOL BOL 20 ug/1 BOL 40 ug/1 BOL 20 ug/1 BOL 20 ug/1 BOL 20 ug/1 BOL 20 ug/1 BOL 100 ug/1 BOL 20 ug/1	2,4-DINITROPHENDI.	를	ĝ	8	2	2	8	8	
PHEMOL 60L 100 ug/1 60L 200 ug/1 BDL 100 ug/1 60L 100 ug/1 BDL 100 ug/1 60L 100 ug/1 BDL 100 ug/1 BDL 100 ug/1 BDL 20 ug/1 BDL	2-N19ROPHENDL	ē	\$	Ē	2	2	R	2	_
0.3-METHYLPHENOL, BOL 20 ug/1 140 ug/1 6.40 230 ug/1 330 ug/1 120 ug/1 140 ug/1 6.40 BOL 20 ug/1 BOL	4-NITROPHEMOL	율	욵	2	8	옲	2	2	<u>.</u> .
## 100 mg/l 330 mg/l 120 mg/l 140 mg/l 640 mg/l	4-CH, 080-3-METHYLPHENDL	Ē	\$	Ē	2	R	R	೭	<u> </u>
RICHLORUPHEMOL BOL 20 ug/1 BOL	PENTACHE OROPHENOL	_		_			훒	2	····
DRUPHEMOL BDA 20 ug/1 BDA 40 ug/1 BDA 20 u	PHENO.	R	2	Ž.	2	2	ನ	2	<u>.</u>
N. 801. 20 ug/l 801. 100 ug/l <t< th=""><th>2,4,6-TRICHLOROPHENGL</th><th>2</th><th>2</th><th>2</th><th>2</th><th>2</th><th>೩</th><th>R</th><th>_</th></t<>	2,4,6-TRICHLOROPHENGL	2	2	2	2	2	೩	R	_
A 4-MEIHTPHENOL BDL 20 ug/l BDL 100	2-METHYLPHENOL	ຂ	\$	2	2	2	೭	₽	
894, 190 ug/1 801, 200 ug/1 801, 100 ug/1 80	4-METHYLPHEWOL	2	\$	2	2	2	2	R	<u> </u>
100 100 17 100 100 1 100 100 100 100 100	BENZOIC ACID	8	É	2	2	2	8	8	_
A 2.4.5-INILAL WARNERS. BUT 100 BG/1 BUT 100 LG/1	2,4,5-TRICH,060PHENOL	울	200	2	8	8	8	8	_

r.e. wright as ciates, inc.

Table 6-4 (Cont'd)

Surface Water Base Neutral/Acid Extractable Results

	3118	12093		B6021		12051		12074	
	31.00	07/24/87		13/12/187		01/24/07		10/12/10	
	MIND WATER	- 3		- 1		9 1		9 3	
9	3530-0403 13 0403	E		Ĭ		•		•	
	ACID EXTRACT/ BASE NEWT. LAS TO A	143052		143053		750CY		143055	
		::		11 14 11 11 11		10 10 15 17		14 14 14 14 14	
8 107		臺	 2 2	₹	7 <u>6</u> 2	蓋	了 是 免	臺	\ <u>\frac{1}{2}</u>
	ACEMAPATATI EME	\$	7634 02	氢	7 8	Ž	<u>~</u> €	藍	28
60	ANTERACEN	臺	20 mg/l	8	<u> </u>	룛	76 mg/	藍	\display = \frac{1}{2}
5	BENZO A YANTERACERE	蓋		표	76m 82	2	7 <u>m</u> 8	훒	\ <u>\</u>
18	BENZO(A POTREME	章		章	/6m 名	줊	/g 2	鞷	<u>}</u>
407 8	BEHZOL BYCLUGRAM THENE	鼋		蓋	7 2 2	ž	· 全 完	囊	<u>7</u> 61 82
8	BENZOLG.H., I DPERTLEME	Z		쫉	 	至		麗	
8	BENZOLK YLUGBERTHERE	臺		蓋		鼍	7 雪 晃	ਛ	<u>₹</u>
8 O 7	BISC-2-CH GOOFTEOXY FETTAME	鼋		鼋	70 m3/	臺	76# 02	蠹	763 RE
_	BIST -2-CH DOOFTHY! KINCE	E		麗		2		æ	\bullets
	BIS(2-CH DROISOPROPYL)ETHER	蓋	76n 8	쯢		a	70 mg/l	蓋	<u>/</u> €
	B1S/2-ETHYLHEXYL PHITHALATE	氢	76m 62	蓋	20 Mg/]	Ē		쿒	2
	4-BRONGPHENTL-PHENT ETHER	\$	20 mg/i	8		8	764 82	3	70 H6/
45.8	BULTY BENZYL PHTMALATE	롩	20 49/	逶	1/6m 02	줊	Z0 mg/1	蓋	/6a 02
	2-CH OROMAPHTEALENE	S	20 ug/1	줊		鞷	Z0 Mg/	富	/6n eZ
8 /17	4-CHI OROPHENTI - PHENTI ETHER	Ē	20 119/1	藍		E	20 mg/l	E	20 mg/
	CHRYSEME		20 ug/l	霊	20 mg/l	鼋	7 <u>64</u> 82	8	76n 02
	DIRECT (A.H.)ANTERACEME	蓋	20 ug/l	藍	20 ug/l	\$	70 mg/	蓋	/6si 02
	1,2-DICHLOROBENZENE	룗	20 trg/1	8	20 ug/l	鱼	[/6# 0Z	Ē	/6si 02
421 B	1,3-DICHLOROBENZEWE	ŧ	7/6h 62	囊	7/6m @Z	藍	/智 兒	藍	<u>₹</u>
	1.4-DICHEOROGENZENE	8	20 mg/J	喜	20 mg/J	쿭		E	20 ug/
423 B	3,3"-DICHEOROBENZIOINE	豆	10 mg/]	쿒	[/6n @	룙	1/6# 0 4	æ	/함 약
	DIETHYL PHIMALAIE	3	20 ug/i	툺	76H 92	3	 見		<u>}</u>
	DINETHTL PHINALATE	\$	70 mg/	蓋	/bn ez	3	1/m 82	蓋	/bn g2
€ 9Z†	DI-K-BUITLPHIHALATE	Ē	76 mg/J	E	20 mg/1	-) ug/l	蘦	\display="1" 12
	2,4-DIMITROTOLUENE	蠹	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	æ		₹	76 R3/	æ	/함 오
458 B	2,6-DIMITROFOLUENE	2	20 ug/l	æ	70 Ad/	줊	20 119/1	줊	
8 6Z)	DI-N-OCITI, PHINALATE	80		66	20 ug/l	藍	20 ug/l	2	<u>₹</u>

r.e. wright associates, inc.

A COLONIAL CONTINUE CO		S11E POINT SAMPLE DATE DATE MARRIEL	86021 SURF WAT SW-8 07/24/87		86021 SURF WAT SM-9 07/24/87 0		86021 SURF UAT SW-9 DUP 07/24/87	,	6602) SURF UNT SU-10 07/24/87		
H LUCKAMINICE B L 20 ug/1 B D 20 ug/1 B	2		143052		143053		143054		143055		
Figure F		FLUCRANTHEME		7/6m 02/1	2	1/6m 02	E 3	20 69/1	Æ 8	20 Eg/1	
B. EXACHA GROBULADIENE BOL 20 ug/1	13 B	FLOORENE Heyach orobenzene		2 mg/1	5 5 6		<u> </u>	2 (m)		1/6n 02	
BOTATION	4318	HEXACHLOROBUTAD I ENE	8		둂	1/6n 02	8	20 ug/l	蓋	1/bn 02	
SCHEMENTIAL 18 18 18 18 18 18 18 1		HEXACHEOROCYCLOPENTADIENE		76 2 2 2	E	20 ·eg/1	ಹ 2	76 E	E E	29 Eg/	
		INDERIOR 1,2,3-CD PPTRING		76m 22	E		E	/6a ez	E	20 ug/1	
B MAPHTHALENE B M 20 ug/l		ISOPHORONE		20 ug/1	蓋		줊	20 ug/1	\$	20 mg/l	
B M. 12 Oug/1 B M. 20 ug/1	439 B	MAPHTHALENE		20 ug/l	2		E	20 trg/	番	/6m 02	
B N-HIROSODEMENTAMINE BOL 20 ug/1 BOL 20 ug/1<		MI IROBENZEME		1/6n ez	E		E	2 2 2 3 3 3	E 8	2 to 10 to 1	
Parkentingered Park		M-MIROSO-DI-M-PROPYLAMINE			E 8			76 mg/L		76m 62 77 mg/	
B TREME BOL 20 ug/1 BOL 30 ug/1 <		R-MI-ROUGHTHEN - E-MINE(-1) Despendent		20 Mg/1	i di		E	20 uq/l	E	1/6n ez	
B 1,2,4-TRICHLOROBENZENE BOL 20 ug/1 BOL 20 ug				20 ug/l	æ	20 ug/l	8	20 ug/1	B	1/60 02	
B CH 27TL ALCOHOL BOL 20 ug/l		1,2,4-TRICHLOROBENZENE		20 ug/1	8	70 ng/J	藍	20 trg/l	Ē	76m 02	
8 4-CHLOROAMILINE 80L 20 ug/1 80L	474 B	BENZYL ALCOHOL		1/6n 02	E	70 mg/l	\$	1/m &	*	/sia &	
B DIREKLOR WANK BDL 20 ug/1 BDL 20	475 B	4-CHLOROAMIL INE		/6a 02	a 8	20 mg/l	E	\[\frac{1}{2} \]	E	7 28 28 28	
B 2-MITROMANILIME BOL 100 ug/1 BOL 20 ug/1		DIBERZOR URAN		- T	5 2	76m 62	5 2			7 m 07	
B 3-MITROMNILIME BDL 100 ug/1 BDL 20		2-m1mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm		. [/en ee	ੱ ਛੱ	76n 001	E	100 mg/1	墓	100 mg/1	
B 4-MITROMMILINE BOIL 100 ug/1 BOIL 20 ug/1 BOI		3-MITROANILINE		/6n 00	1	100 mg/1	200	100 49/1	蓋	100 mg/1	
A 2-CMLOROPHENOL. A 2,4-DICKLOROPHENOL. BOL 20 ug/1	480 B	4-WITRDAWILINE	_	1/69 00	Ē	100 ug/l	æ	100 ng/1	至	100 mg/	
A 2.4-DIRHURGNERM BOL 20 ug/1 BOL 100 ug/1 BOL 20 ug/1 <th< td=""><th>₩ 109</th><td>2-CH_080PHEWIL</td><td></td><td>1/6n 02</td><td>E</td><td>2 to 2</td><td><u>ਛ</u></td><td>20 mg/1</td><td>출 중</td><td>2 i</td><td></td></th<>	₩ 109	2-CH_080PHEWIL		1/6n 02	E	2 to 2	<u>ਛ</u>	20 mg/1	출 중	2 i	
A 2-A DIMITROPHEMUL BDL 100 ug/1 BDL 20 ug/1	€ 60 70 70 70 70 70 70 70 70 70 70 70 70 70	Z,4-Uilkiukukkkuu. 2,4-Diustuviosukui		7/64 02	E	76 e2	3 3	7 m 02	E	() () () () () () () () () ()	
A 2,4-DINITROPHENUL BDL 100 ug/1 BDL 20 ug/1 </td <th>¥ 707</th> <td>4.4.0191700-2-46THM PARKS</td> <td>_</td> <td>7 m e</td> <td><u>ਛ</u></td> <td>1/6n 001</td> <td>ਛ</td> <td>100 ug/l</td> <td>8</td> <td>100 kg/l</td> <td></td>	¥ 707	4.4.0191700-2-46THM PARKS	_	7 m e	<u>ਛ</u>	1/6n 001	ਛ	100 ug/l	8	100 kg/l	
A 2-NITROPHENOL BOL 20 ug/1 BOL 100 ug/1 BOL 100 ug/1 BOL 100 ug/1 BOL 100 ug/1 BOL 20 ug/1 <th>₹ 509</th> <td>2.4-DINITROPHEND</td> <td></td> <td>1/6n ee</td> <td>8</td> <td>100 ng/l</td> <td>E</td> <td>100 ug/l</td> <td>룖</td> <td>100 mg/1</td> <td></td>	₹ 509	2.4-DINITROPHEND		1/6n ee	8	100 ng/l	E	100 ug/l	룖	100 mg/1	
A 4-MITROPHENOL BOL 100 ug/1 BOL 20 ug/1 BOL <th>606 A</th> <td>2-NI TROPHENOL</td> <td></td> <td>20 ug/l</td> <td>줊</td> <td>20 ug/l</td> <td>룙</td> <td>20 mg/J</td> <td>₹</td> <td>/ 配 见</td> <td></td>	606 A	2-NI TROPHENOL		20 ug/l	줊	20 ug/l	룙	20 mg/J	₹	/ 配 见	
A 4-CHLORO-3-METHYLPMENN BOL 20 ug/l BOL	A 709	4-HITROPHENOL		1/6n oc	8 0	100 ug/1		100 tg/1	ਛ	100 Eg/	
A PENTACHLOROPHENOL BDL 100 Ug/1 BDL 100 ug/1 BDL 100 ug/1 BDL 100 ug/1 BDL 20	₩ 809	4-CHLORO-3-NETHYLPMENOL		76n 02	5	76in 62	E	769 82	E 8	1/6m cz	
A 2-4-5-TRICHLOROPHENOL BDL 20 ug/1 BDL 100 ug/1 BDL	₹ 609	PENTACHLOROPHENOL	_	/bn 00		75 20 100 100 100 100 100 100 100 100 100	E	1/6n 6d/	E	26 86 E	
A 2-4.6-TRICALOROPHENOL BOL 20 49/1 BOL 20	610 A	PHENOL		769 82	E 8	76 8	E	1/6h 62	E 8	76m 87	
A 2-METHYLIPHENUL COUGHT ON LOUGHT O	# :	2,4,6-1RICHLOROPHENOL		1/5ii 82	5	769.02	E 8	2 18	E	7 m 20	
A 4-PK INTLIPIKANI. A BENZISIC ACIO A BENZISIC ACIO A 2,4,5-181CHA GROPPENO. BOL 100 ug/l BOL 10	¥ 0.79	2-RETURNERU.		1/61 SZ	3 8		5 6	1/6n n/	5	. (Km 02	
A 2,4,5-TRICH (DROPHENC)	# 5C7	4-74 IMILYRENUL OCENTALE ACIA	_	1/61 PE	5 2	100 kg/1	É	1/6n 001	i S	1/60 001	
	. 929 4 929	2.4.5-121CH COPPERS		7/bn 00	.	100 ug/l	.	100 49/1	a	100 ug/1	

J. D. WILSING ASSOCIATIOS, UTC. 6121-059-AA

r.e. wright associates, inc.

V.
ī
es
125
ğ
an
Ç
and
/PCB
တဲ
1de
爿
Pest
ä
late
:
306
rfac
S

14.7044	
143046	SH-1 SH-2 07/24/87 07/24/87
143046	
143046 143048 143049 143050 143050 143050 143051 143046 143048 143049 143050 143051 143048 143049 143050 143051 143051 143051 143051 143051 143051 143051 143051 143052 1	
ug/1 BOL 0.05 ug/1 BOL 0.01 ug/1 BOL 0.02 ug/1 BOL 0.02 ug/1 BOL 0.02 ug/1 BOL 0.02 ug/1 BOL 0.05 ug/1 <td></td>	
ugy1 BOL 0.05 ugy1 BOL 0.10 ugy1 BOL 0.05 ugy1 <td>100000 pro- 20 0</td>	100000 pro- 20 0
ug/1 B0L 0.05 ug/1 B0L 0.10 ug/1 B0L 0.05 ug/1 B0L 0.10 ug/1 B0L 0.05 ug/1 <td>U.03 Ug/1</td>	U.03 Ug/1
1967 1860 0.05 ug/1 800 0.05 ug/1 800 0.05 ug/1 800 0.10 ug/1 800 0.05 ug/1 800 0.01 ug/1 800 0.05 ug/1 800 0.01 ug/1 800 0.05 ug/1 800 0.01 ug/1 800 0.05 ug/1 </td <td>0.05 ug/l BOL</td>	0.05 ug/l BOL
ug/1 BNL 0.05 ug/1 BNL 0.10 ug/1 BNL 0.05 ug/1 BNL 0.05 ug/1 BNL 0.05 ug/1 BNL 0.00 ug/1 <td>0.05 ug/l BOC</td>	0.05 ug/l BOC
ug/1 B01 0.05 ug/1 B01 0.1 ug/1 B01 0.20 ug/1 B01 0.1 ug/1 B01 0.1 ug/1 B01 0.20 ug/1 B01 0.1 ug/1 B01 0.20 ug/1 B01 0.1 ug/1 B01 0.20 ug/1	0,05 ug/l 60t
ug/1 BDL 0.5 ug/1 BDL 0.2 ug/1 BDL 0.2 ug/1 BDL 0.1 ug/1 BDL 0.20 ug/1 BDL 0.1 ug/1 BDL 0.20 ug/1 BDL 0.1 ug/1 BDL 0.1 ug/1 BDL 0.20 ug/1 BDL 0.1 ug/1 BDL 0.1 ug/1 BDL 0.20 ug/1 BDL 0.1 ug/1 BDL 0.1 ug/1 BDL 0.20 ug/1 BDL 0.1 ug/1 BDL 0.1 ug/1 BDL 0.20 ug/1 BDL 0.1 ug/1 BDL 0.1 ug/1 BDL 0.20 ug/1 BDL 0.1 ug/1 BDL 0.1 ug/1 BDL 0.1 ug/1 BDL 0.20 ug/1 BDL 0.1 ug/1 BDL 0.20 ug/1 <t< td=""><td>0.05 ug/l BDL</td></t<>	0.05 ug/l BDL
ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.1 ug/1 B0L 0.20 ug	0.5 ug/l 80t.
ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.1 ug/1 B0L 0.1 ug/1 B0L 0.05 ug/1 B0L 0.05 ug/1 B0L 0.05 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.05 ug/1 B0L 0.20 ug/1 B0L 0.05 ug/1 B0L 0.1 ug/1 B0L 0.1 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.1 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.20	0.1 ug/l 60t.
ug/1 BOL 0.1 ug/1 BOL 0.20 ug/1 BOL 0.1 ug/1 BOL 0.20	0.1 ug/l 80t
ug/1 BM, 0.1 ug/1 BM, 0.20 ug/1 BM, 0.10 ug/1 BM, 0.11 ug/1 BM, 0.12 ug/1	0.1 ug/l 80L
ug/1 B0L 0.05 ug/1 B0L 0.05 ug/1 B0L 0.05 ug/1 B0L 0.05 ug/1 B0L 0.1 ug/1 B0L 0.2 ug/1	0.1 ug/l BDL
ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.1 ug/1 B0L 0.20 ug/1 B0L 0.2	0.05 ug/l BDL
ug/1 B0t. 0.1 ug/1 B0t. 0.20 ug/1 B0t. 0.1 ug/1 B0t. 0.20 ug/1 <	0.1 ug/] BDL
ug/1 BM, 0.1 ug/1 BM, 0.5 ug/1	0.1 ug/l 80A
BOL 0.05 ug/ BOL 0.05 ug/ BOL 0.10 ug/ BOL 0.05 ug/	0.1 ug/l
BOL 0.5 ug/1 BOL 0.5 ug/1 BOL 1.0 ug/1 BOL 0.5 ug/1 BOL	0.05 ug/1 BOK
ug/1 BM, 0.5 ug/1 BM, 0.5 ug/1 BM, 1.0 ug/1 BM, 0.5 ug/1 BM, 1.0 ug/1 BM, 0.5 ug/1 BM, 0.5 ug/1 BM, 1.0 ug/1 BM, 0.5 ug/1	0.03 89/1 60.0
ug/1 BOL 0.5 ug/1 BOL 0.1 ug/1	. 601. 0.5 ug/l 801. (
BOL 0.5 ug/1 BOL 0.5 ug/1 BOL 1.0 ug/1 BOL 0.5 ug/1 BOL	0.5 no/1
ug/1 801 0.5 ug/1 801 0.5 ug/1 801 1.0 ug/1 801 1.0 ug/1 801 1.0 ug/1 801 1.0 ug/1 801 1 ug/1 801 0.5 ug/1 801 0.1 ug/1 801 0.1 ug/1 802 0.1 ug/1 802 0.1 ug/1 802 0.1 ug/1 803 0.1 ug/1 80	0.5 uq/l BOL
ug/l B0t 1 ug/l B0t 0.5 ug/l B0t 1 ug/l B0t 0.5 ug/l B0t 0.1 ug/l	0.5 ug/l BOL
ug/l 80t 0.5 ug/l 80t 6.5 ug/l 80t 1.0 ug/l 80t 0.5 ug/l 80t 0.5 ug/l 80t 1 ug/l 80t 1 ug/l 80t 1 ug/l 80t 1.0 ug/l 80t 1.0 ug/l 80t 1.0 ug/l 80t 0.5 ug/l 80t 0.5 ug/l 80t	1 ug/] BDA
ug/l BOL 1 ug/l BOL 0.5 ug/l BOL 0.1 ug/l BOL 0.2 ug/l 0.0 ug/l 0.1 ug/l BOL 0.1	0.5 ug/l
ug/l 801 0.5 ug/l 804 0.5 ug/l 804 1.0 ug/l 801 0.5 ug/l 804 0. ug/l 804 0.1 ug/l 804 0.1 ug/l 804 0.2 ug/l 804 0.1 ug/l 804 0.1 ug/l 804 0. 143025 143026 113027 143028 143029 143029	1 ug/1 BOL
ug/l BDL 0.1 ug/l BDL 0.2 ug/l BDL 0.2 ug/l BDL 0.1 ug/l BDL 0.2 ug/l BDL 0.1 ug/l BDL 0.2 ug/l	0.5 ug/l 89K.
143025 143026 143027 143028 143029 143029 143029 143029 143029 143029 143029 143029	N. 0.1 ug/l BDL
NA 1/ DE 1/	143034
	RN 10 ng/1 804

r.e. wright as ciates, inc.

Surface Water Pesticides/PCB and Cyanide Results

Table 6-5 (Cont'd)

\$4021 Sure Wh. 54-10 67/21/87	S	. \$50071		BOL 0.05 ug/l	BOL 0.05 49/1	BOL 0.05 49/1	BOL 0.05 kg/1	BOL 0.05 ug/l	BON. 0.5 kg/i	90. 0.1 ug/l			BOL 0.1 kg/]		BDL 0.1 ug/]				80f. 0.05 ug/1		_		BOL 0.5 ug/]		100	S	-	804 0.5 ug/l	BOL 0.1 ug/]	143032	12 11	10 149/1
84021 Sudf Pari SH-9 Dup 07/24/87	* 3	113054	14	BOX. 0.05 kg/l	BOL 0.05 kg/l	BOL 0.05 Mg/1	BOE 0.05 kg/1	1/6n.50.0 108	POL 0.5 ±g/l	804 0.1 ug/l	BOL 0.1 #g/l	-		804 0.05 ug/1		80K 0.1 kg/!			BOK 0.05 ug/l	-		1/6 0.5 ug/1		BOL 0.5 ug/l	(F)C 1 kg/l	BOL 0.5 ug/l	EG. 1 mg/l	BOK 0.5 ug/l	BOL 0.1 Mg/l	143033	## ## ## ##	BDL 10 49/1
12002 12002 14-7 1002 1721/10	* 3	143053	11	BOL 0.05 ug/]	1/64 0.0 Kg/1	-	9,	BOL 0,05 kg/l	BOL 0.5 ug/1	BOL 0.1 ug/l	BDL 0.1 kg/1	90t 0.1 ug/l	BOL 0.1 ug/1	-		80t 0.1 ug/l	BDL 0.1 ug/1				80t 1 ug/l	BOL 0.5 mg/l	80f. 0.5 ug/l	BOL 0.5 mg/i	8DL 1 ug/1	BOL 0.5 ug/l	BOL 1 vg/1	1/bn 0.5 ug/1	BDL 0.1 kg/l	143031	1: 1: 1: 1: 1: 1:	BOL 10 ug/1
20/72/20 8-#5 14m 3005 12098	' 3	143052	10 12 17 17 17	BOL 0.05 WIV!	NOC 0.05 1997	80L 0.05 bg/1	POL 0.05 kg/l	80t. 0.05 ug/l	80t. 0.5 ug/l	BOK. 0.1 49/1	BBC 0.1 ug/1	BOL 0.1 49/1	BOL 0.1 49/1	BOR, 0,05 ug/]	BDL 0.1 ug/1	BOL 0.5 ug/1		_			BOL 1 ug/l	BOL 0.5 ug/]			1/69 1 1/08	0.5		0.5	9	143030	***	891. 10 kg/l
SUR POURF SAMPLE DATE DATE	MATRIX	CATO LL LATERANCE / PCB LATERA		701 P ALOSTH	а.	_	704 P GAMM-BHC	_	a.	_	. a.	_	۵.	_	712 P BETA-ENDOSULFAN			116 P. HEPTACHLOR	717 P HEPTACHLOR EPOXIDE	118 P PCB-1242	_	_	721 P PCB-1232	۵.	723 P PCB-1260	_		_	739 P ENDRIN KETONE			1001 C CYANIDE

dibenzofuran isomers as described by the SAS request included here as Appendix 3. The TEF values for all surface water samples were less than 1 ppb. The TEF values, however, were not reported here because TEF values are associated with risk assessment. Therefore, the actual concentrations of each isomer were reported.

Dioxin isomers, which were identified above detection limits, comprised only two of the five groups of dioxin isomers, namely octa- and hepta-. The octa-dioxin isomer was consistently found in concentrations greater than the hepta-isomers. Total concentrations of dioxin ranged from below detection levels to 20.3 ppt. Surface water samples SW-1 through SW-5, with the exception of SW-3, contained elevated levels of dioxin. These samples were collected downstream of the storm sewer outfall at SW-5. Dioxin levels were below detection limits at locations above the storm sewer outfall (surface water sampling locations SW-6 through SW-10). The results of the dioxin analysis of surface water samples are included as Table 6-6.

Dibenzofuran isomers were found in 5 of the 10 surface water samples at levels above detection limits. Concentrations of total dibenzofurans ranged from below detection level up to 13.9 ppt. Like their dioxin counterparts, the octa-isomer was found consistently in greater concentrations than the hepta-isomer. In addition, samples SW-1 through SW-5, with the exception of SW-3, contained elevated levels of dibenzofurans. These sampling points were located downstream of the storm water sewer discharge pipe. Surface water samples collected upstream of the storm sewer discharge pipe, samples SW-6 through SW-10,

r.e. wright as Loiates, inc.

Table 6-6

Surface Mater Dioxin Results

	SITE: POINT: UAB 10 4: 6C/MS DATE: MATRIX:	86021 SW-1 30648-17 8-20-87 WA	i 3-17 -87	- 85021 SH-2 30648-15 B-20-87		86021 SJR-3 30648-20 8-20-87 WA	3882	86021 SH-4 30648-16 B-20-87 HA	28 25 G	84021 SH-5 30446-18 8-20-88 WA	ന േഗതയ	86021 SW-6 30648-SRI 8-19-87 IM	യ ഗ ക ക	86821 54-7 30648-8 3-19-87
COP NAME							÷							
2	9	BDL 0.05	2 ppt	801, 0.056 ppt		DL 0.032 ppt	BDF 0.0	0.034 ppt		0.025 ppt		0.058 ppt	9	BOL 0.049 ppt
2378 TCD		BOL 0.05,	<u>s</u>	BDL 0.056 PK		Ot. 0.032 ppt	38	034 ppt		52 ppt		.058 ppt	8	.049 ppt
2	9	BDL 0.22	0.22 ppt	801. 0.10 PK		80t 0.13 ppt	2	.13 ppt	8	24 ppt	훒	0.39 ppt	ž	0.14 Pet
12378 PriCD	9		,											
#ICH	9	80L 0.13 ppt	3 ppt	BOL 0.12 PK		BDL 0.084 ppt	98	.10 ppt	8) de =	\$	0.13 ppt	E	.092 pat
123478 HxCD	9													
123678 HrC00	e =													
130H (130H)	2 9	7.1	ğ	9.6	90t	01. 0.26 ppt	3.3	ţă.	1.7	ŧ	ă	0.21 ppt		0.14 Ppt
234678 HpCD	•		•			1	-							
	Q	S.	ž	11.1		DL 1.6 ppt	9:11	ž	15.6	퓵	줊	0.47 ppt		0.38 Ppt
4														

Table 6-6 (Cont'd)

Surface Water Dioxin Results

		_				*	~	=		*				<u>بر</u>		*	
86021	0- -₹	30648-19	8-20-87	\$		0.04 ppt	0.04	0.19 pt		0.11 ps				0.26 ppt		0.79 ppt	
_			_			8	霊	霊		鼋				蓋		룗	
B6021	6-85	30648-7	8-19-87	£		0.064 ppt	0.064 ppt	0.16 ppt		BOL 0.094 ppt				0.17 ppt		0.54 ppt	
						줊	표	표		Ē				룚		蓋	
	_					-	_										
12098	1990)6-11S	30648-6	18-61-8	\$		0.16 ppt	0.16 pg	0.51 pg		0.29 PD				0.34 PG		1.5 ppt	
_			_			8	昌	蓋		품				줊		藍	
		÷	_			t de	둁	돮		b)				훒		ppt	
86021	9-35	30648	8-13-B	≨		0.083 ppt	0.083	0.17		0.18				0.48 ppt		1.8 ppt	
						8	鞷	룚		8				줊		룶	
SITE	POINT:		GC/MS DATE:	MATRIX:	·										-		
						9	5	Pnc00	PnC00	₩C00	3 1 1 1 1 1 1	HICDO	₩.C90	<u>물</u>	₹	000	_
					à		2378		12378		123478	123678	123789		H 8/91621		J≝ ¥)

r.e. wright associates, in

did not have dibenzofurans detected. The results of the dibenzofuran analysis are included here as Table 6-7.

6.2.4 Summary of Findings

The results from chemical analyses completed on surface water samples collected from Naylors Run indicate that contaminants which may be associated with the NWP are present in the surface water near and below the storm sewer outlet. The concentrations and number of chemicals were greatest in those samples collected downstream of the 36-inch storm sewer outfall, surface water samples SW-1 to SW-5. Concentrations of contaminants were elevated in samples collected near the storm sewer outlet and generally decreased in concentration for samples collected downstream. Contamination in the samples collected at locations above the storm sewer outlet, surface water samples SW-6 to SW-10, consisted mainly of various heavy metals and a limited number of volatile organics, which may be associated with the NWP site, as well as nearby off-site sources.

The chemicals detected in surface water samples SW-1 to SW-5 included PCP, naphthalene, 2-methylnaphthalene, phenanthrene, benzene, toluene, and xylene. These chemicals are believed to be associated with the fuel oil disposed of at NWP which was present on the stream's surface below the storm sewer outlet at SW-5. Concentrations of these chemicals were not detected in surface water samples where the floating oil was not present. Metals, which include copper, lead, barium, iron, potassium, sodium, calcium, magnesium, cobalt, aluminum, and zinc, were detected in all of the surface water samples. The presence of copper and zinc in the surface water may be associated with current

r.e. wrightassociates, inc.

Table 6-7

Results
Dibenzofuran
Water
Surface

	COP KAME	10F 2378 10F Phoby 12378 Phoby	23478 PRUP Hrobe 123478 Hrobe 123478 Hrobe 123789 Hrobe	234678 Hrcdf Hpcdf 1234678 Hpcdf	1234789 HpCDF 0CDF	(3# #)
SITE: POINT: LAB ID 4: 6C/MS DATE: MAITRT:						
8866 SW- 306 90-2		801 0.0 801 0.0 801 0	. 891	3	2.5	
8602j SW-1 30648-17 B-20-87 WA		0.023 ppt 0.023 ppt 0.2 ppt	0.17 ppt	100	bot	
860 1945 1945 1945 1945 1945 1945 1945 1945		80L 0.03 80L 0.03 80L 0.1	0.49	9.46	7.0	
86021 SH-2 30648-15 8-20-87		0.024 ppt 0.024 ppt 0.13 ppt	po t	ĕ	so;	
866 996 8-2		80t. 0.0 80t. 0.0 80t. 0.0	801. 0.048 ppt	90	BDI 0.	
86021 S#-3 30648-20 8-20-87 WA		0.034 ppt 0.034 ppt 0.096 ppt	948 ppt	0.35 ppt	0.81 ppt	
288 -308 -40-60 -40-60		80L 0.0 80L 0.0	BOL 0.066 ppt	3.3	5.5	
84021 SH-4 30648-16 8-20-87		0.021 ppt 0.021 ppt 0.074 ppt	ide pot	藍	至	
8860. SW-2 206.		80L 0.0	80i. 0.053 ppt	5.8		
84021 SW-5 30448-18 8-20-87 WA		0.02 ppt 0.02 ppt 0.18 ppt	53 ppt	ž	₽¢	
38 35 CC &		801.0.0 804.0.0	99 TO	96		
86021 54-6 30648-581 8-19-87 WA		0.029 ppt 0.029 ppt 0.25 ppt	BDL 0.072 ppt	0.42 ppt	0.51 ppt	
86021 5W-7 30648-8 6-19-87 WA		801 0.049 ppt 801 0.049 ppt 801 0.1 ppt	80L 0.055 ppt	80t 0.12 ppt	BOL 0.31 ppt	
		¥ \$ \$	¥	: 5	į.	

r.e. wright as Jeiates, inc.

Table 6-7 (Cont'd) Surface Water Dibenzofuran, Results

8-20-87		0.023 ppt	0.023 ppt	0.16 ppt			BOL 0.067 ppt					0.23 ppt			0.46 ppt	
		鼋	룶	畜			番					2			Æ	
86021 SW-9 30648-7 8-19-87 WA		(0.051 ppt	1 0.051 ppt	10.12 写			80t. 0.077 ppt					1 0.19 ppt			L 0.36 ppt	
		8	8	Ē			氢					盈			쿭	
86021 Su-9(60P) 30648-6 8-19-87 WA		0.14 ppt	0.14 Pat	0.64 Ppt			0.13 ppt					0.37 ppt			0.92 ppt	
		æ	æ	靐			蠹					ē			줊	
85021 SH-8 30648-4 8-19-87	1	0.035 ppt	. 0.035 ppt	0.17 ppt			BOX 0.099 ppt) Pot			BOL #.090 ppt	
		蓋	鬣	藍			蓋					0.38			蓋	
SITE: POINT: LAB 10 4: 6C/MS DATE: MATRIX:																
	STANK GOOD	7031	2378 TCOF	PINCOF	12378 PriCDF	23478 PACDF	HIEDE	123478 HzCDF	123678 H1CDF	123769 HrCDF	234678 H1CDF	HPCDE	1234678 HpCDF	1234789 HpCDF	9000	(300)

wood-treating operations at NWP which utilize water-soluble metal-salt solutions for wood preservation.

It should be noted that dioxin and dibenzofuran isomers were detected in the surface water samples; however, their concentrations were very low, possibly because dioxin may degrade to less complex chlorinated compounds when exposed to ultraviolet light or because of dioxin's very low solubility in water.

6.3 Sediment Sampling of Naylors Run

Ten sediment samples from Naylors Run were collected on four separate days--July 15, 17, 22, and 23, 1987--during the first (preliminary) round of sampling at the Havertown PCP site. Sediment samples were analyzed for the complete HSL, plus oil and grease, by CompuChem, while dioxin and dibenzofuran isomers were analyzed by CAL under the direction of EPA. The purpose of the sediment sampling was to determine if contaminants were being adsorbed onto sediments creating areas of contaminant concentration in sediments at Naylors Run; and also to determine if contaminated sediments were influencing concentrations of contaminants in surface waters.

6.3.1 Sediment Sampling Locations

Previous experience from stream sediment sampling studies has indicated that metals and organic chemicals adsorb onto finer-grained sediments. Therefore, sampling locations were chosen that contained relatively fine sediments, while appearing representative of materials transported by the stream. Downstream sediment locations were sampled first and then progressed upstream to prevent degrading the quality of the

samples. All sample locations were staked or marked and designated SED-1 through SED-10 and plotted on the project base map. Because of hot weather conditions and high ambient VOA air readings in the samplers work zone (later confirmed to be the result of methane, presumably from decaying vegetation in the streambed), sediment sampling of Naylors Run was completed over four separate sampling dates.

6.3.2 Sediment Sampling Procedures

A laboratory-cleaned stainless-steel trowel was used to collect sediment at each sampling location. The appropriate sample jars were filled to two-thirds full of sediment, sealed, and cleaned with distilled and deionized water before being placed in a cooler to await final packaging and shipment. Quality control for the ten sediment samples consisted of one duplicate sample collected at sediment sampling location S-7, one performance evaluation (PE) sample supplied by the EPA, and one "blind" sample collected from REWAI property. The purpose of the "blind" sample and PE samples was to serve as an EPA check on CLP laboratory's QA/QC for the dioxin and dibenzofuran analysis. Results of the sediment sampling are included here in Appendix 2.

6.3.3 Chemical Results

4.4

Concentrations of HSL metals were found to be elevated in sediment samples, as they were in the surface water samples (Figure 6-4). The metal which was detected in the highest concentrations in both analyses was calcium with levels as high as 119,000 ug/l in sediment sample SED-10, which also had the most elevated total concentrations of metals.

The sediment sample analysis results differed from the surface water analysis results in that the total concentrations of arsenic, beryllium, chromium, copper, lead, mercury, and nickel were comparatively greater in all sediment samples collected. Of these metals, chromium and lead were detected in the greatest concentrations, 1,020 ug/kg and 401 ug/kg respectively. Chromium is a metal which has been used in the chromated copper arsenate solution at NWP, and lead is found in gasoline which may have entered Naylors Run through various pathways. The results of the HSL metals analysis on sediment samples is shown by Table 6-8.

No VOAs were detected in the sediment analysis summarized by Table 6-9. VOAs were possibly not detected in the sediments because the sediment sample jars were not septum-sealed VOA vials, potentially allowing volatilization of some VOAs present in the samples, and because VOAs do not adsorb to sediments nearly as readily as metals or BNA compounds.

Several base neutral and acid extractable compounds were detected at elevated levels in all of the sediment samples, as shown in Table 6-10. Pentachlorophenol was detected in sediment samples collected below the storm sewer outfall (SED-1 through SED-5) and also in sediment sample SED-10.

SED-10, located in the drainage ditch north of NWP property, had the most elevated concentration of PCP at 8700 ug/kg. This sample was located directly across from NWP in an area that receives surface water runoff directly from NWP property and storm water drainage from a storm sewer which runs along the south and east property line of NWP. The detection of PCP in soil samples collected on NWP property probably explains the presence of this compound in sediment sample SED-13. The

Table 6-8 Sediment Metals Results

						ı		<u>:</u>								
-	SITE	86021		B6021		86021		86021		86021		86021		86021		
•	POINT	SEDINENT		SED INEM		SEDIMENT		SEDINENT		SEDIMENT		SEDIMENT		SEDINENT		
	SAPLE	25011		2601 2		SE013		38		SEDIS		2038		SED-7		
	OMIE	07/15/87		07/15/87		07/15/87		07/15/87	•	07/16/87		03/11/0		07/23/87		
	DEPTH	0		0		•		0		9		6		0		
	MATRIX	쓩		ઝ		*	,	×		ᅜ		೫		딿		
ONPO CLL EMPO-DESC																
 •	METALS LAB 10 9	141093	'	141090		141106		141111		141522		141691		142919		
				*						15		****		2000		
101 N ANTINONY		89	13 UG/KG	줖	11 US/KG	æ	13 US/KG	8	12 116/16	8	12 UG/KG	É	15 UG/KG	蓋	13 06/	786
102 M ARSENIC			M F UG/KG	2.5	# F U6/KG	6.5	N F U6/K6	æ.	N F U6/KG	4.2	F UG/KG	2.6	F US/KG	2:1	£ 06/KG	, KG
103 M BERTLE IUM			9X/9A	1.3	\$5/K6	0.76	US/KG	0.43	DE/K6	9.8 B.0	US/KB	0.59	016/KG	0.5	/96	93/
=			.1 UG/KG	<u>:</u>	9¥/¥0	1.7	06/K6	2.3	9X/90	1.2	M 106/KG	Ē	1,3 UG/KG	₩	/9A H	92
#			M 16/K6	æ	M UG/KG	305	# US/KG	%	9X/90 H	8	U6/K6	₹	9X/90	3	<u>¥</u>	92
Æ			9X/90 W	ਲ	E # 06/K6	38	E # 06/KG	æ	E II UG/KG	雷	06/K6	S	9X/90	33	/96	7EG
Ė			11C/1KG		F UG/X6	₽	06/KG	333	9X/90	2	# U6/K6	135	# U6/K6	68	196	92
E		88. 9.			0.14 UG/KG	ਛ	0.12 US/KG	0.13	57 US/KG	줊	0.12 US/KG	0.21	8 CV UG/KG	0.17	/90 02 1	98
·		7.8	9X/9A		UG/KG	9.6	U6/KS	•	93/90	92	US/KG	2	06/KG	E	3	94
=		904			3.7 LE/KG	E	3.3 UG/KG	E	3.1 UG/KG	쿒	6.1 U6/KG	盏	7.9 UG/KG	蓋	190 9.9	9
111 M SILVER	•	99			2.1 UG/KG	鼍	1.9 UG/XG	藍	1.7 UG/KG	藍	1.7 UG/KG	鼍	2.2 UG/KG	뚪	1.9 16/	We
Æ		0.85	9X/90	1:2	93/9A	a	0.58 US/KG	<u> </u>	3.55 UG/KG	Æ	0.54 UG/KG	蓋	0.7 UG/KG	翻	/39 95.0	92
.		86	US/KS	8	9X/90	213	06/KG	218	06/K6	231	06/K6	72	9X/9A	99	/90	92
=		95	94/KG	Ź	06/K6	Ξ	9X/90	2	91/90	20	UG/KG	3	19e/k6	~	<u> </u>	9
=		15100	98/KG	34200	06/KG	32900	9X/第	24900	116/KG	24600	9X/90	10800	08/KG	28 28 28 28	/90	92
		8	91/90 #	232	M # 166/KG	2 4 6	9W/90 W #	1370	9X/9G N K	10400	M 106/K6	176	9X/90 W	2	/96 W	92
=		35	U6/K6	ě	9X/90	æ	06/K6	33	9X/90	47	E U6/KG	<u>6</u>	E 166/16	×	E 166/	92
118 H ALUMINUM		9170	04/KG	25200	05/KG	8330	9x/90	98	9X/90	5940	116/KG	3870	116/KG	Ş	/90	9
Æ		8.9	E U6/KG	*	E 55/KG	8.2	E 156/KG	2.2	£ 116/KG	1.7	9X/9A	e.	9X/90	~	12	9
E		4360	E 116/16	9030	E UG/KG	<u>8</u>	E U6/KG	25600	£ 06/KG	22400	UG/KG	9180	9K/KB	26700	99	92
129 M CALCIUM		0897	# UG/KG	2860	# 46/KG	25200	# US/XG	4 98	9X/9() #	46000	04/KG	17500	UG/KG	49700	16/KG	9
=		232	9X/9N	096	9x/9n	971	9X/90	霯	94/90	73	11e/K6	룹	548 UG/KG	2	79 3	9 /46
131 N POTASSIUM		1600	E UG/K6	7970	E VG/KG	4140	E 16/KG	83	E 116/KG	1720	PE/K6	É	730 UE/KE	줊	/98 629	92

r.e. wrightassociates, inc.

r.e. wright as Sociates, inc.

Cont'd)	Results
102) 8-9	. Metals
Table	Sediment

		13 V6/166 16/16	98/XB 116/XB	E # NUG/KG	N 96/K6	9X/95	.9 UG/KG	.1 US/KG	# UG/KG	E UG/KG	116/KG	93/90	4 (Mo/No	20/VB	F UG/KG	0E/X6	W6/K5
86071 Sedimont Sed-10 07/23/87 Se	142929	1050 200	5; = =	# 1020E	23.	22	* ·		3510 E	15000	₹	₩ \$		24100	0006	3900	3210
		11 UG/KG UG/KG	98/90 08/80	E M NUGAKE	E N UG/KG	4.9 U6/KG	5.8 66/KG	1.6 04/K6	E 1 56/KG	16/86 E (86/86	WE/KE	E # 16/KG	# W6/K6	1.73 06/Kb	₹ U5/XG	DE/KG	553 WG/KG
86021 SED-9 07/23/87 SE	162923	3.3 第.6	7.0	183	25.		E	2 26 26 26	19	23300	4930	\$	98.7 7	E 6917	76790	696	1
		12 15/75 F 15/75	0.97 UG/KG	9X/90	M F U6/K6	0.12 W6/KG	6 UG/KG	1./ @G/K6 0.53 UG/K6	UG/K6	06/KG UG/KG	M 06/KG	E UG/KG	97/20	0.9/ US/Kb	66/K6	9X/90	500 UG/K6
86021 SEQUENT SED-8 07/23/87	112922		0.5	262	æ 2	7.9	를	E E	<u> </u>				3170	1380			
•		13 06/KS F 86/KG	U6/K6	UG/KG	9X/90 = 1	09/80 08/KG	7 UG/KG	1.9 UG/KG 0.62 UG/KG	5X/90	US/KG	93/90 N	E 06/K6	92/90	56/KG	9X/98	5X/90	W6/X6
86021 SED-7 DUP 07/23/87	142921	₩ 2.3 2.3	3,6	2 8	\$ 8 6	67. ea	률	- - - - - - - - - - - - - - - - - - -	217	22.186 22.186	1780	0	3860	1.6	38200	2	91 ₹
STIE POUNT SAWPLE DATE DEPTH MAIRIX	METALS LAS TO I																
		ANT LINDAY ARSENIC	BERTLE FUM	CHRONIUM	LEAD	REKUMI	SELENTUM	SILVER	Z1WC	BARTON	MANGANESE	WANADION	AL UM I MUM	COBACT Mocence CHM	CALCIEN	1955 1955	POTASSIUM
	ಪ ≨	¥ ¥	# # E	202 a	20	8 8	¥ 0=	E 2	113 H	= = =	191	117 #	# @ _	25	E 82	2	E .

Table 6-9
Sediment Volatile Organic Results

•		o4/c	ua/ko	64/kg	ug/kg	ug/kg	ug/Rg	ug/ka	ga/kg	ug/kg	ug/lg	ug/kg	g/kg	6 /	99/kg	ē ;		63/60 64/60	2 2/2	ug/kg	ug/kg	/kg	ug/kg	6 . /t	<u>54/6</u>	ng/kg	ug/kg	6a/6n	63/£3	69/kg	19/1g	61/6n	64/6n	fu A
# E	,	-			6.8 g	ĕ;					8.9 E		8. 9	6.8 49	6. 8. 5 6. 5	š' :	=	5 5			8.4	8. 8.	8. 9.	5 E0 ;	á í	5 9		∌ ••••••••••••••••••••••••••••••••••••		# :	= :	= :	± °	b B
86021 SEDINENT SED-7 07/23/87	142889		富	륦	8	줄 :	E E	蓋	E	륦	쭕	叠	롩	2	Z	z 3	5 8	≈ g	E E	를 등	8	蓋	震 :	& :	E	E	륦 :	2	E	를 :	蓋	E 8	₹ 8	é
		B mo/kn	3.0 no/kg	1.0 ug/kg	8.0 mg/kg	0.0 ug/kg	04/m 91	07/67 01	8.0 mg/kg	8.0 ug/kg	.0 ug/kg		1.0 Hg/kg	0.0 ug/kg	0 ug/kg	64/6m 91	16 ug/10	9 Lg/Kg	o do maying	8.0 ug/kg	9.0 ug/tg	9.0 ug/kg	8.0 ug/kg		16 trg/trg	8.0 ug/kg	0.0 mg/kg	9 ug/kg	16 ug/kg	3.0 trg/kg	16 ug/kg	16 ug/kg	16 Eg/rg	5.0 uy/ ky
86021 SEDIMENT SED16 07/17/87 0	141690	#### 7	Ē	E	<u>.</u>	-	E	_	_		_	_	줊	롶		로 :	E			= = =		_				E	프 중	≂	룚	<u>=</u>	E	E	로 i	
		@ Mo/ha	.2 ug/kg	.2 ug/kg			12 ug/kg 12 is/kg		6.2 ug/kg		5.2 ug/kg	.2 ug/kg	6.2 ug/kg	.2 ug/kg	.2 ug/kg	12 ug/kg	12 ug/kg	61/6n A	.2 mg/mg	6.2 ug/kg	.2 ug/kg	.2 ug/kg	6.2 ug/kg	.2 ug/kg	12 ug/kg	6,2 ug/kg	.2 ug/kg	B 46/kg	12 ug/kg	.2 ug/kg			12 ag/kg	.z ug/kg
84021 SEDIMENT SEDAS 07/16/87 0	141511	1.5.1	· *	9 708	_	₹			_	_	_	-	-	-	9					9 79										_	爱	롩 :	를 :	ě
		3 119/140	3 ug/kg	3 ug/kg	6.3 ug/kg	3 ug/kg	3 ug/kg	3 uq/kg	6.3 ug/kg	6.3'ug/kg	3 ug/kg	3 ug/kg	3 leg/leg	6.3 ug/kg	6.3 ug/kg	13 ug/kg	13 ug/kg	6 ug/kg	6.3 tig/10	2 19/18 3 18/10	3 uq/ta	6.3 ug/kg	6.3 mg/kg	.3 ug/kg	13 mg/kg	6.3 ug/kg	.3 ug/kg	8 ug/kg	13 mg/kg	6.3 ug/kg	13 ug/kg	3 ug/kg	13 ug/kg	.3 ag/kg
86021 SEDINENT SEDIA 07/15/87 SE	01110									99. 6.				-	-9				-											_		줊	를 등	e High
,		8 no/kg	8 ug/kg	8 ug/kg	8 ug/kg		14 ug/8g 14 un/ka	6.8 ug/kg	6.8 ug/kg	6.8 ug/kg	6.8 ug/kg	8 ug/kg	6.8 ug/kg	6.8 ug/kg	8 ug/kg	14 vg/kg	14 ug/kg	B ug/kg	6.8 ug/kg	6.8 ug/rg 6.8 no/ko	2 (c) (c)	6.8 ug/kg	6.8 ug/kg	8 ug/kg	14 ug/kg	6.8 ug/kg	.8 ug/kg	B ug/kg		6.8 ug/kg	d ug/kg	64/6n +		91/fa 8.5
86021 SEDTHENT SEDI3 07/15/87 SE	141095	9	99.	99. 6.	804	~		_	BDL 6.						~			•												_	쯢	_ E	를 :	_
		S 110/kg	5 11g/kg	s ug/kg	7.6 ug/kg	5 ug/kg	13 09/13 15 ua/ha	7.6 ug/kg	% ug/kg	s ug/kg	7.6 ug/kg	7.6 ug/kg	7.6 ug/kg	s ug/kg	s ug/kg	15 ug/kg	15 ug/kg	8. kg/kg	6 ug/kg	7.6 trg/rrg	6 mg/kg	6 kg/kg	6 ug/kg	6 ug/hg	15 ug/kg	,6 ug/kg	e ug/kg	B ug/kg	15 ug/kg	6 ug/kg	15 vg/kg	S ug/kg	5 ug/kg	6 ug/kg
86021 SEDINENT SEDI2 07/15/87 0	980171	 80			80L 7.										_					£ &						•						를 등	-	. YG
		no/ka	_	_		1 ug/kg		[ug/kg									ea/ka			1 US/Kg 1 ma/kg		1 ug/kg							t ug/kg		4 ug/kg	t ug/kg	4 ug/kg	l ug/kg
86021 SEDINENT SED41 07/15/87 0	141082				E 7.	-		-		800, 7,1						至	_									四 7.1			3		3	표	=	. Z
SITE POINT S SAMPLE DATE O DEPTH MATRIX																		٠																
	V.O.C. LAB 1.0.			38106	!	3	OSHE CENTED		TEAME	黨	掌	뿚	JWF.	JPROPENE			:	26		Ę	CROETIFIE	ETHAME	€1¥Æ			OROPROPENE				ىپ				_
	CHPO CL. CAPO-DESC	SECULTURE SECULTURE	BRONDFORM	CARBON TETRACILLORIDE	CHI OROBEMZENE	DIBRONOCHLOROMETHAM	CATUMOS UTANE 2-fa ogne layi olayi ethed	CHL OROFORM	BRONDO I CHŁOROME THAM	1,1-DICHLOROETHANE	1,2-01CHLOROETHANE	I, 1-DICHLOROETHENE	1,2-DICHLOROPROPAME	C1S-1,3-D1CHLOROPROPENE	ETHYL BEHZENE	DROYONE THANE	CHLOROME THANE	METHYLEME CHLORIDE	I, I, 2, 2-TETRACHLOROETHAME	TELKALMUNDE INTER	IRANS-1.2-DICHLOROETHENE	. 1.1-TRICHLORDETHAME	.1,2-TRICHLORDETHANE	IRICK OROCTHEKE	VINTL CHLORIDE	IRANS-1,3-DICHLOROPROPENE	STYREME	ACETONE	2-BUTANDME	CARBON DISULFIDE	2-iEXAMONE	4-HETHTL-2-PENTANONE	VINYL ACETATE	XYLENES (TOTAL)
	3. TO GE	203 U BFB		206 V CAS	-	_ >= =	· -	-	_	>	_	>	>	>	>	<u> </u>		_	•			in in	_	-	_	_		豆豆				•		289 V XY
	5	۶	2	8	2	8	\$ 5	; ≂	215	₹	212	216	3	38	219	≈	Z	~	: ::	25	ī ₹	×	\sim	42.	ĸ	7	7	<i>(</i> ,),	N,	≈	₹	స	≈	~

r.e. wrightassociates, inc.

r.e. wright as clates, inc.

Table 6-9 (Cont'd)

Sediment Volatile Organic Results

r.e. wright associates, inc.

L

Results
Extractable
Neutral/Acid
Sediment Base

Table 6-10

1970 119/	7/6a 4/6a 4/6a 4/6a			970 ug/kg 920 ug/kg 920 ug/kg 620 ug/kg 920 ug/kg 920 ug/kg 920 ug/kg
142889 1500 1500	2100 8700 14000			
ug/kg J. ng/kg	0 1/63 0 1/63 0 1/63 0 1/63 0 1/63	0 ug/kg 550 ug/kg 550 ug/kg 550 kg/kg	550 ug/kg ug/kg 550 ug/kg 550 ug/kg ug/kg	550 49/kg 550 49/kg 550 49/kg 550 49/kg 550 49/kg 550 49/kg 550 49/kg 550 49/kg
199/kg 3 ng/kg				420 ug/kg 420 ug/kg 420 ug/kg 420 ug/kg 420 ug/kg 420 ug/kg 420 ug/kg 420 ug/kg
141511 ====== 2100 68	1300 1300 1600 2000			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
ug/kg 3 ug/kg	64/6n 64/6n 64/6n	ug/kg 430 ug/kg 430 ug/kg 430 ug/kg	430 ug/kg J ug/kg 430 ug/kg 430 ug/kg D ug/kg	430 ug/kg 430 ug/kg 430 ug/kg 430 ug/kg 430 ug/kg J ug/kg 430 ug/kg 430 ug/kg 3 ug/kg
141110	2800 7500 5900 3000	6400 801 801 801 2100	894 310 894 10000 850	游戏员家家爱 ² 点页 6
89/kg J 89/kg	0 49/kg 0 49/kg 0 49/kg 0 49/kg			450 ug/kg 450 ug/kg 450 ug/kg 900 ug/kg 450 ug/kg 1 ug/kg 450 ug/kg 1 ug/kg 450 ug/kg
141095 1111095 2800 95	14000 14000 14000	0091 008 0091	27 BB B 27 BB 18 B	\$ 65 65 65 65 65 65 65 65 65 65 65 65 65
J 119/kg 520 119/kg	3 ug/kg 3 ug/kg 3 ug/kg 1 ug/kg 3 ug/kg	ug/kg 520 ug/kg 520 ug/kg 520 ug/kg J ug/kg	520 ug/kg ug/kg 520 ug/kg 320 ug/kg J ug/kg	520 ug/kg 520 ug/kg 520 ug/kg 520 ug/kg 520 ug/kg 520 ug/kg 520 ug/kg
				-
470 ug/kg ug/kg	19/kg 19/kg 19/kg 19/kg			470 ug/kg 470 ug/kg 470 ug/kg 470 ug/kg 470 ug/kg 470 ug/kg 470 ug/kg
141082 BDL 850	3800 3800 2900 1300	280 28 28 28 29 29 28 28 29 29	80r. 80r. 3700 480	运运运 运运运运运运
MC1/ BASE MEU1. L ME LENE				1,2-DICHLOPOBENZERE
	F BMSE MEUT. LARS 1D 19 141096 141095 141110 141511 141690 142899 142899 142899 142899 142899 142899 142899 142899 142899 142899 142899 142899 142899 142899 142899 142899 142899 142899 142800 142899 14289 142899 14289 142899 14289 142899 14289 142899 142899 142899 14289 142899 14289 142899 14289 142899 14289 142899	MACT BMSE MEDI 141082 141085 141109 141511 141699 141589 141084 141085 141100 141511 141699 141699 141589	Marche March Marche Marche March Marche Marche Marche Mar	

r.e. wright as peiates, inc.

			1	1		3	3							
			Sed	Sediment Base Meutral/Acid Extractable Results	Meutr	al/Acid	Extrac	table Re	sults					
	3115	B4021	2076	<u>s:</u>	12034		200		252 252		1205		12698	
	THICK	SCOURCE		1			SEDIMENT		公司馬克		SEBINER		SEDIMENT	
	STARTS		25035	2	쭚				55 55 55 55		意识		- 93	
	DA16	8	03/15/8	t)	67/15/87		11/51/10		28/71/20		13/11/18	_	07/23/07	
	200	- ;		•	•		e į		e ;		- ;		•	
		*		. L	×		*		×		×		×	
2 2 3		-	14 th 182		141045		14111		142171		111200		000071	
		794161 d		•									100761	
131		5	90	od//pa	35000	D ma/kg	2000		27000	Di/W	33000	0 ve/ka	200	
	ST BENECHT	148 MA	13	No./ha	3500	pi/on	8	wa/ke	0000	#0/kg	2400	Ma/kg	\$	- A-
* 25.4	THE PROPERTY OF THE PARTY OF TH	Ę	3	E.70. co.7kg	3	45.00 US.Co	3		. "	01.74 PC	3	C. C. marke	. •	Carried Poly
		3 8	ž ž		į s		ź				į	55.0 mg/ kg		
3	HE EALTH UNDER 1 NO 1 EME	3	E 2	61/61 02C	3 3		3 8	_		64/64 A24	ž 3	550 mg/mg		63 Mar 100
8	HELIACHE UNUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTU	3 :	5 3		ž ž		Ē ā				ž ž			
8 96	PEXACHE DROP I PARE	PUL 4/0 19/19	₹ :	61/6# n/c	≣ :				٠.		2 2			64 /54 67
437 B	INDERO(1,2,3-CD)PYRERE		Ę		3	61 /6a	3 €				_		_ `	
867	ISDPHORDNE	\$	藍		Ē	450 ug/kg	鼋	430 kg/kg	٠.	\$1/\$1 P.			٠.	
# 6C	MAPHTHALENE	71 J ug/lg	\$		\$	J ug/kg	2	J mg/kg	_		_			
8 077	· · · · · · · · · · · · · · · · · · ·	2	Ē		盏	450 ag/kg	鬣			120 ug/kg			-	720 ug/kg
E C77	Satisfaction of the Dengal Assista	57	3		Ē		\$						-	
413 8	M-MITDROAMIDEENT ANIME (1)	5	2	5	ā		憂	430 pg/kg						920 uq/kg
	OCCUMANTURCHIC	•	5	3	3300		0000		_		_			
	PROFILE TO THE FILE	•	3		37000	n vo/ko	23000		900	D sto/kg	280			01/01
	FINCES	47	Š	S	3 2	450 up/to	8						_	P20 mo/kg
937	1,Z,4-IX;UKUBURALERE	3 5	5 8	2 2	돌		Ē	420 ES NO.		M1/mm 027	E	550 ac/kg		
9 7 7	SCHETL FELLING.	2 5	\$ 2	3 5	ž 8	450 697 69	3							920 ma/fra
(75 B	4-CHOOCALILIE	\$.	5 8	2 5	E 8		£ 8							
476 B	DIBERZOFURAN	- '	S	3		67/5#	2 5	Bu Afair					3 5	64/as
437 B	2-METHYLMAPHTHALEME	-	至	22					-					
£78 @	2-MITROAMILIME	30000000000000000000000000000000000000												1,000 to 150
es :	3-NI TROANIC INC		E	8									_	
20	4-NI TROANILINE		3 3	3 5	_				-		-			
* 6	Z-EMLUNISTRAM.	3 5	5 8	3 5										
# 70 9	2,4"Dichelonus restat. 2,4"Dichelonus restat.	\$ 5	E	520 na/ha	E	67 mg/fm	E	430 ug/kg	8	420 mg/lig		550 mg/kg		920 ug/kg
	A A. DEMITOLO-METHY DOCK	3	2	24.0									_	
C	7. A. A. C.	8	S	2,00	•	2300 ng/kg						700 ug/kg	_	
#- YUV "	2-M1 TOCOM WO	5	Ē	2										
3	T-NIIBOBIEM	25	훒	2600	•••								_	
	A-Clar Con-3-MeTHY! PASTED	2	Ē	\$										
Û	PENTACIA (NEIDHFM)	-	120	_	870		2300						_	
Ĵ		2		\$	蓄	450 uq/kg	臺					_		920 mg/kg
6	2 A A-TOICH PRODUCTUM		2	8	8	_	爱	64/6# OC	200	420 ag/kg	줊	550 ug/kg		_
* LC *	2. MCTURE CUCANI	2	4	200	æ	ASO morko	2					-	<u>ਛ</u>	_
	A MACHINE DE DE COURT		Š		*	1 mo/kg	Ē	_	8	J ug/kg		J 149/kg	٠.	920 ug/kg
W 770	4-THILITHERAL		769		3 2	eries c	2	_	- E	_	23	J mo/fra	•	_
625 A	BERICOTC ACIO		r a		5 5 8	22 mg/kg	£ &	100 mg/kg	2 2	100 09/19	B)	700 ug/kg	₹	61/bn 009
626 A	Z,4,5-IRIUMUKUPENUL	8DC 2490 Ug/Kg	Per l	51 /fin no97	Š	64 /6.R 77	,	_	,	-				

Table 6-10 (Cont'd)

r.e. wright associates, inc.

			H	Table 6-10 (Cont'd)	-10	ont'd	_			
		Sediment Base Neutral/Acid Extractable Results	Base 1	Veutra	l/Ac1d	Extra	ctab	le Res	ults	
	3115	86021		86021		•	86021		86021	
	POINT	SEDIMENT		SEDIMENT		33	SEDIMENT		SEDIMENT	, •
	SAMPLE	de 7-035		P-03		5	2.0-6		95	
	DATE	0//23/18/		/8/£2//0		2//0	/8/22//0		0//23/8/	
	KATELY	* 74		* 5X			אט		° 54	
2	CHPO CL. CHPO-DESC	ł			•		! .		1	
	ACID EXTRACT/ BASE MEUT. LAB 10 #	142890		142891		142	142892		142904	
-			4		1 nother	-		3 am/tan	ě	11 .0/6.
	_			3 3	760	.	š § §		4 :	
	_	1000 2000		5 2	93/68 9C8	er 9		97/60 028	≘ \$	01/0n c
		0000	5 4 / Sn	2 2	, e		8 8	64/68 64/68	3 5	24/50 t
909	BENZO(A)AMTHWACETTE	0001	61/6n	B 50	54/60 14/60	•		64 /60 17 /10		gr/gu t
₩ 90	BEMZOLA JPYREME	DATE:	61/6n	AB/2	69/Kg	_	3 3	6 /6 /	2 5	6x/6n r
	_	0009	61/6n	2/00	er/tg		805	61/6n	BB(2)	ug/kg
408 B	_	\$200	61/6n	2	61/6n C		220	6x/6n	2	6u/6n c
€0 8	BENZO(K)FLUORANTHENE	00091	ug/kg	2700			_		2000	
410 B	_	801, 1000	ug/kg	藍	850 ug/kg			820 eg/kg	章	980 ug/kg
411 8		BDI 1000	64/6n	줊	850 ug/kg		靈	820 ug/kg	룚	980 ug/kg
	_	BDK 1000		至	850 ug/kg			820 kg/kg	룚	980 ug/kg
413 8	_	1700	ug/kg	780	J ug/kg		ş	ug/kg	<u>26</u>	ug/kg
	4-BRONOPHENYL-PHENYLETHER	BDL 1000	ug/kg	3	850 ug/kg		恩	820 ug/kg	藍	980 ug/kg
415 8		560	ug/kg	130	J ug/kg			820 ug/kg	<u>88</u>	ug/kg
416 B	• •	BDH. 1000	ug/kg		850 ug/kg			820 ug/kg	쯢	980 ug/kg
417 8	4-CHLOROPHENT -PHENYLETHER	BDL 1000	04/6n	g g	850 ug/kg			820 ug/kg	줖	980 ug/kg
418 8	CHRYSENE	9900	ug/kg	2700	ng/kg		2600	ug/kg	550	J ug/kg
419 8	DIBENZ(A,H)ANTERACENE	<u>8</u>	ng/kg	룚	850 ug/kg		230	ug/kg	2	J 49/kg
420 B	_	BDL 1000	ug/kg	富	850 ag/kg			820 ug/kg	富	980 ug/kg
421 8	1,3-DICHLOROBENZEME	904 1000	ug/kg	<u> </u>	650 ug/kg		翼	820 ug/kg	E	980 ug/kg
422 B	_		ng/kg	8	850 ug/kg			820 ug/kg	롩	980 ¥g/kg
423 B			ng/kg	8	1700 ug/kg		_	1600 ug/kg	\$	
124 B	DIETHYLPHIHALATE	_	ng/kg	豎	850 ug/kg		翼	850 ug/kg	藍	980 ug/kg
425 B	DIRETHYL PHINALATE	BDI, 1000	ug/kg	8	850 ug/kg	, m	98 88	820 ug/kg	藍	
426 B	01-M-BUTYLPHIHALATE			\$	850 ug/kg	œ			룚	
427 B	2,4-BINITROTOLUEME			쯢		ē.		820 ug/kg	盈	980 #g/kg
4 58 8	2,6-DIMITROTOLUEME	906 1000		蓋		5	_	820 ug/kg	룚	980 ug/kg
424 B	01-M-DC17L PHIHALATE	- 88	ug/kg	富	850 ug/kg	e r	2	820 ug/kg	륦	980 ug/kg

. Table 6-10 (Cont'd)
Sediment Base Neutral/Acid Extractable Results

i

142891 142891 142891 142891 1000 49/kg 1801 858 1000 49/kg 1801 858 1000 49/kg 1801 858
142891 142891 142891 160 49/kg 800 J 100 49/kg 801 850 100 49/kg 801 850 100 49/kg 801 850 100 49/kg 801 850 100 49/kg 801 850
142 0 49/kg 1000 49/kg 1000 49/kg 1000 49/kg 1000 49/kg
a w
25.000 25.000 25.000 25.000 25.000 25.000 25.000 801, 801, 801,
MATRIX CHPO CL CHPO-DCSC ACID EXEMACI/ BASE NEUS, LAG ID 8 ***********************************

detection of PCP in sediment samples SED-1 through SED-5 may be the result of contaminants coming from the 36-inch storm sewer outfall, as evidenced by PCP not being found above detection limits in the sediment and surface water samples collected upstream of this location. However, high detection limits at sediment sampling locations above the storm sewer outfall indicate that there may also be elevated levels of PCP present in the sediment between sampling locations SED-6 through SED-9. Concentrations of PCP in samples below the storm sewer outfall ranged from 2300 ug/kg in SED-4 to 120 ug/kg in SED-1. These results appear to indicate a decrease in PCP concentration in sediments downstream of the concrete headwall of Naylors Run east of Eagle Road, as shown on Figure 6-5.

As shown by Figure 6-6, total concentrations of base neutral and acid extractable compounds were comparatively higher at sediment sampling location SED-6 with 220,770 ug/kg, and also at sediment sampling location SED-3 with 219,091 ug/kg, than at other sediment sampling locations. The least elevated concentration of BNAs was found at sediment sampling location SED-2 with 6,524 ug/kg of total BNAs.

Comparison of the surface water chemical analyses and the sediment chemical analyses shows that a significantly greater number of base neutral and acid extractable compounds were detected in the sediments of Naylors Run than in the surface waters, indicating that the contaminants are adsorbing and concentrating onto the sediments in Naylors Run, rather than remaining in the surface waters. Concentrations of these compounds were elevated in sediment samples collected above the storm sewer outfall, indicating that the source of these

contaminants is probably NWP even though PCP was not found above the elevated detection limits in samples SED-6 through SED-10.

The results of the pesticide and PCB analyses for the sediment samples are included here as Table 6-11. Only three pesticide compounds were identified in the sediments, namely delta-BHC, chlordane, and dieldrin. Delta-BHC was only detected at location SED-5 (storm sewer outfall), at a concentration of 33 ug/kg. Chlordane was found at five sampling points, SED-6 through SED-10 at concentrations ranging between 150 and It appears that the source of chlordane is located above the covered pipe section of Naylors Run, somewhere upstream of location SED-6. The chlordane source is apparently unrelated to the subsurface fuel oil contamination as evidenced by the chemical's absence in Naylors Run below the storm sewer outfall, Dieldrin was found in three sediment sampling points, SED-3 through SED-6, with the exclusion of SED-5. No PCBs were found above detection limits in the sediment samples.

Levels of oil and grease were found to be elevated in all of the sediment samples, with the exception of SED-2, in which no concentrations were found above detection limits. Oil and grease levels were highest in SED-10, with 5,300 mg/kg and in SED-6 at 5,400 mg/kg. The highest concentrations of oil and grease were detected above the storm sewer outfall to Naylors Run (SED-5), which indicates that there may be a large portion of dissolved oil and grease entering the stream from this area, as shown by Figure 6-7. Possible sources of oil and grease in this section of the stream could be runoff from nearby road surfaces, parking lots, service stations, or possibly a leaking underground fuel tank in the area. Results for these analyses are included in Table 6-11. Cyanide was only found in one of the life Section to

Sediment Pesticide/PCB and Cyanide and Oil & Grease Results

ole 6-11

	49/kg 19/kg 19/kg 19/kg	19/19 19/19 19/19 10/19	19/19 19/19 19/19	11 99/19 110 19/19 220 19/19 110 19/19 110 19/19 110 19/19 110 19/19	22 ug/kg 22 ug/kg 0.68 MG/KG	660 mg/kg .97 pH 73
86021 SED-7 07/23/87 0 SE 142889	E E E E E					(60 142889 142919 142919 15333 73
<i>s</i> , 6	13 kg/kg 13 ug/kg 13 ug/kg 13 ug/kg	19/19 27 19/19 27 19/19 27 19/19 27 19/19 19/19 19/19		13 ug/kg 130 ug/kg 130 ug/kg 130 ug/kg 130 ug/kg 130 ug/kg 130 ug/kg 270 ug/kg	27.0 09.kg 130 ug/kg 27 ug/kg 0.81 MG/K6	5400 mg/kg 7.21 pH 62
86021 SEDIMENT SEDIG 07/17/87 0 SE 141690	EEEE	₹ 25 25 25 8 E	e e e e	: : : : : : : : : : : : : : : : : : : :		141690
	20 ug/kg 20 ug/kg 20 ug/kg 20 ug/kg ug/kg	64/60 04/60 04 64/60 04/60 04/60 04/60 04/60 04/60 06/60	20 09/kg 40 09/kg 40 09/kg 20 09/kg	20 ug/kg 200 ug/kg 200 ug/kg 200 ug/kg 200 ug/kg 200 ug/kg 200 ug/kg	604 400 89/Kg 604 200 89/kg 604 40 89/kg 1522 ==== 804 0.62 MG/KG	4500 mg/kg 6.94 pH 80
86021 SEDINENT SEDIS 07/16/87 0 SE 141511	100 B B B B B B B B B B B B B B B B B B		i	i e e e e e e e e e e	804 804 141522 ===== 804 141512	7 1833
	20 ug/kg 20 ug/kg 20 ug/kg 20 ug/kg 20 ug/kg	200 ug/kg 40 ug/kg 40 ug/kg 40 ug/kg 20 ug/kg	40 ug/kg 40 ug/kg 40 ug/kg 20 ug/kg	20 ug/kg 20 ug/kg 200 ug/kg 200 ug/kg 200 ug/kg 200 ug/kg 200 ug/kg 200 ug/kg	400 ug/kg 200 ug/kg 40 ug/kg 1.3 MG/KG	710 mg/kg 7.05 pH
86021 SEDIMENT SED14 07/15/87 0 5E	EEEE	机阻挡阻分配	5 5 5 5 5 E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	804 804 111111 111116	
	22 ug/kg 22 ug/kg 22 ug/kg 22 ug/kg 22 ug/kg	230 ug/kg 43 ug/kg 43 ug/kg 43 ug/kg 22 ug/kg	43 ug/kg 43 ug/kg 43 ug/kg 72 ug/kg	22 ug/kg 230 ug/kg 230 ug/kg 220 ug/kg 220 ug/kg 220 ug/kg	BDL 430 ug/kg BDL 220 ug/kg BDL 43 ug/kg 1106 ==== BDL 0.68 MG/KG	1400 mg/kg 6.99 pH 73
86021 SEDIMENT SEDI3 07/15/87 0 SE		5 5 5 5 5 E	5 5 5 5 E	: : = = = = = = = = = = = = = = = = = =	80L 141106 141106 141115	141065
	12 ug/kg 12 ug/kg 12 ug/kg 12 ug/kg 12 ug/kg	128 ug/kg 24 ug/kg 24 ug/kg 24 ug/kg 24 ug/kg		12 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg	BDA 240 ug/kg BDA 120 ug/kg BDA 24 ug/kg 1090 :::::	25 #9/kg 7.03 pH
86021 SEDIMENT SEU2 07/15/87 0 SE 141086	55 55 55 55 55 55 55 55 55 55 55 55 55	E E E E E	爱感感		141090 141090 16114	786171
and the state of t	11 ug/kg 11 ug/kg 11 ug/kg 11 ug/kg	110 tg/kg 22 tg/kg 22 tg/kg 22 tg/kg 22 tg/kg 22 tg/kg	22 ug/kg 22 ug/kg 22 ug/kg 22 ug/kg 11 eg/kg	11 ug/kg 110 ug/kg 110 ug/kg 110 ug/kg 110 ug/kg 110 ug/kg	220 ug/kg 110 ug/kg 22 ug/kg 0.71 % 6/KG	140 mg/kg 7.07 pH 70
86021 SEDINENT 5ED#1 07/15/87 0 5E	5 5555	E E E E E	金属最后	5 S S S S S S S S S S S S S S S S S S S		141083
STTE POINT SAMPLE DATE OFFH HAIRIX SC			3 - V	30 2	8	-
CHPO CL CHPO-DESC	ALORIN ALPNA-BHC BETA-BHC GANNA-BHC DELTA-BHC	CHLORDANE 4,4'-001 4,4'-006 4,4'-000 DIELDRIM AS DUALEMOCKE AS	ALPHA-EMANSOLFAN BETA-ENOOSULFAN ENDOSULFAN SIKFATE ENDRIN HEPTACHI DR	HET TRUM, ON THE T	2 7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1033 C - OIL AND GREASE 1047 C PH 1080 C - PERCENT SOLIDS
ರ 82	202 P 203 P 203 P 204 P	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	737		725 P 729 P 739 C	1033 C 1047 C 1080 C

r.e. wright associates, inc.

Table 6-11 (Cont'd)

Sediment Pesticide/PCB and Cyanide and Oil & Grease Results

	23 kg/kg 23 kg/kg 23 kg/kg 23 kg/kg	23 ug/kg 46 ug/kg 46 ug/kg 46 ug/kg 46 ug/kg 23 ug/kg	46 ug/kg 46 ug/kg 46 ug/kg 23 ug/kg 23 ug/kg 30 ug/kg	60 ug/kg 230 ug/kg 230 ug/kg 230 ug/kg 230 ug/kg 230 ug/kg 6 ug/kg	76/1/6 19/1/9	
	នននន	28 4 4 2 4 2	3 4 4 5 5 5	2 4 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.73 NG/KG 8300 ag/kg 7.19 pH	69
96021 SED-10 67/23/87 6 SE			豆 鹿 庭 豆 豆 豆	800 BOL	142975 142904 142929	
	7.7 ug/kg 7.7 ug/kg 7.7 ug/kg	9.7 ±9/kg 19 ±9/kg 19 ±9/kg 19 ±9/kg 19 ±9/kg	19 49/kg 19 49/kg 19 49/kg 9.7 49/kg 9.7 49/kg	190 ug/kg 197 ug/kg 197 ug/kg 190 ug/kg 190 ug/kg 197 ug/kg 197 ug/kg	0.58 NG/KG 840 mg/kg 7.29 PH	*
96.021 SED-9 07/23/67 0 SED-9 SED-9 SED-9		_	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	801 801 801 801 801 801 801 801	•	
	10 kg/kg 10 kg/kg 10 kg/kg 10 kg/kg	10 49/kg 20 49/kg 20 49/kg 20 49/kg 20 49/kg 10 49/kg	20 kg/kg 20 kg/kg 20 ug/kg 10 kg/kg 10 ug/kg	200 ug/kg 100 ug/kg 100 ug/kg 100 ug/kg 200 ug/kg 100 ug/kg 200 ug/kg	0.61 NG/KG. 2400 mg/kg: 7.35 pH	. 28
84021 SEDIMENT SCD-8 07/23/87 SE		<u> </u>	蓝蓝蓝蓝蓝	804 804 804 804 804 804 804 804 804		
	12 ug/kg 12 ug/kg 12 ug/kg 12 ug/kg	12 ug/kg kg/kg 24 ug/kg 24 ug/kg 24 ug/kg 24 ug/kg	24 ug/kg 24 ug/kg 24 ug/kg 12 ug/kg 12 ug/kg	25.0 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg 120 ug/kg	0.72 NG/KG 1600 eg/kg 6.9 pH	69
\$50 160 350-7 000 0 0 550-7 000	2 2 2 2 2	85 88 88 88 88 88 88 88 88 88 88 88 88 8		89 E E E E E E E E E E E E E E E E E E E		! ! ! !
SITE POUNT SAMPLE DEPTH PATENT MATERIX	PESTICIDES / PCB'S LAB TO B **C **C					
3530-646	PESTICIDES / BETTERSTEES ALDRIN M.PHA-BHC BETA-BHC GAWRA-BHC	DELLA-BHE PH. ORDANE 4,4-DD1 6,4-DD6 6,4-DD6 1	BETA-EMOSSULFAN ENDOSULFAN SULFATE ENDRIN HEPTACHLOR HEPTACHLOR FREPTACHLOR	70-124 70-123 70-123 70-124 70-1248 70-1248 70-1249 70	CYAMIDE BIL AND GREASE PH	PERCENT SOLIDS
2530-84K2 T2 64K2	702 P P 703 P P P P P P P P P P P P P P P P P P P				0 3 E01 0 3 E01	1.080 C P

r.e. wright asseciates, inc.

more JST (116-15-88 86021-062-AA

7. 9. WITTING BESOCIAMOS, UTC.

samples from Naylors Run, at location SED-4, with a concentration of 1.3 mg/kg.

Results from the dioxin and dibenzofuran analysis were below detection levels and may be explained by the potential degrading effect that ultraviolet light has on these isomers or because no measurable concentrations were accumulating in the sediments which were sampled. Results of the dioxin and dibenzofuran analysis in the sediment samples are included in Tables 6-12 and 6-13.

6.3.4 Summary of Findings

Chemical data from the sediment samples collected from Naylors Run indicate that contaminants, specifically PCP, dioxin, dibenzofuran, oil and grease, chromium, lead, and gasoline/fuel oil components, are accumulating in the sediments. In addition to PCP, several other base neutral and acid extractable compounds were detected at elevated levels in all sediment samples. No VOAs were detected in Naylors Run sediments. Contamination in Naylors Run can be divided into two distinct areas, above (SED-1 to SED-5) and below (SED-6 to SED-10) the storm sewer outlet.

The source of contamination in sediment samples SED-1 to SED-5 appears to be predominantly from the oil which was entering Naylors Run around the 36-inch storm sewer outlet that runs behind the Philadelphia Chewing Gum property. Contaminants in the oil such as PCP, chlorinated dioxin and dibenzofuran, and several fuel oil constituents can be found in significant concentrations in all of these sediment samples. Concentrations

Table 6-12

Sediment Dioxin Results

86021 SED-6(OUP) 30892-7 9-10-87 SED	80t 0.038 ppt 80t 0.038 ppt 80t 0.05 ppt	BOL 0.094 ppt	1,9 ppt	7.5 ppt em
86021 SED-6 30872-1 9-10-87 SED	0.051 ppt 0.051 ppt 0.069 ppt	0.02 ppt	ppt	pot
-8 87		99. 99.	pot 1.8	ppt 7.6
86021 SED-5 30892-8 9-10-87 SED	801 0.019 ppt 801 0.019 ppt 801 0.032 ppt	9.6	7.4	8.9
86021 SED-4 30892-108X2 9-10-87 SED	0.009 ppt 0.009 ppt 0.04 ppt	pot	ppt	
		0.13	5.7	_
86021 SED-3 30892-3 9-10-97 SED	BDL 0.016 ppt BDL 0.016 ppt BDL 0.058 ppt	2.0 ppt	25.5 ppt	
86021 SE0-2 30892-9 9-10-87 SED	017 ppt 0.017 ppt 0.025 ppt	0.097 ppt	pot	ŧ
	804 0 801 0	. BDL 0	0.28	11.1
86021 SED-1 30892-681 9-10-87 SED	80t. 0.016 ppt 80t. 0.016 ppt 80t. 0.042 ppt	1.0 ppt	14.6 ppt	•
STE: POINT: LAB ID 4: GC/NS DATE: FATRIX:		_		
	1090 378 1090 Pacoo		00 H HC00 HC00 RC00	000

r.e. wright associates, inc.

r.e. wright as Clates, inc.

Table 6-12 (Cont'd)
SedIment Dioxin Results

86021	<u>2-8</u> 3	30692-5	4-10-67	03 5	~	0.15 ppt									
12099	6-035	30892-2	9-10-87	<u>.</u>	0.012 ppt	0.012 ppt	0.048 pet		0.06 ppt	•			ja B		ě
					臺	震	튪		豎				0.27		
1209	8-8 3	0892-4	-10-87	9	0.036 ppt	.036 ppt	.092 ppt		0.044 ppt	:			pol		jd.
•	<u>ν</u>	6	•			富			<u></u>				9.16		 5:
84021	SE0-7	30892-11	9-10-87	9 5	BOL 0.026 ppt	0.026 ppt	0.034 ppt		0.054 ppt				Ē		ž
					줖	ğ	藍		줖				0.65		2.3
SIE:	POWI:	# 2 93	GC/MS DATE:	22 12 1 E											
					25	55	PAC 80	PACOO	#C00	Frce Barres	HCO	#C00		€ 03	9 200
						2378		12378		123478	123678	123789		1234678	

86021 SE-6(DUP) 30892-7 9-10-87 SED		0.02 ppt	0.02 ppt J.fl.k. opt			줉			-	舊	;	ppt	
2 0 6 6						9.19				0.82		0.95	
86021 SE0-6 30892-1 9-10-87 SE0		80t. 0.026 ppt	3.026 Ppt 3.063 ppt			89L 0.14 ppt				Ē	:	pot So	
		8	Z Z			둞				. 0			
86021 SED-5 30892-8 · 910-87 SED		.032 ppt	0.032 ppt 0.027 ppt	: :		Ē				ž	•	ğ	
20,00		E				0.54				3.9		5.4	
86021 SED-4 30892-10RX 9-10-87 SED		0.023 ppt	.023 ppt		•	ž				ž	:	逶	
a 0, 0, 0		E			;	0.083				5.5		7.1	
86021 SED-3 30892-3 9-10-87 SED		BOL 0.012 ppt	7.012 ppt pot	•	•	ž				줊	;	Þóc	
	÷ =	E	0.065			3.5				22		38.6	
86021 SED-2 30892-9 9-10-87 SED		0.008# ppt	.0084 ppt 0.016 ppt			0.022 ppt				ŧ	;	Pat	
~ ~ ~ ~				!		- 56				0.025		0.32	
86021 SED-1 30892-6R1 9-10-97 SED		.014 ppt	0.014 ppt 0.029 ppt	•	•	Ē				ig E		pot b	
******		8		•	;	2.0				14.6		20.9	_
SITE: POINT: LAB ID 1: GC/MS DATE: MAITRX:													# MPC) ## POSSIBLE OPE INTERFERENCE
	COP NAME	3031	70314 F0014	12378 PnCDF	23478 PNCDF	HCOL	123478 H1CDF	123678 H1CDF	234678 HrCDF	HOCOF	1234678 HpCDF 1234289 HpCDF	9000	(# MPC) (## POSSIBLE (

r.e. wright associates, inc

r.e. wright as clates, inc.

Table 6-13 (Cont'd) Sediment Dibenzofuran Results

of these contaminants were found to be progressively lower in samples collected downstream of the storm sewer outlet.

The source of contamination in sediment samples SED-6 to SED-10 was probably the result of storm water runoff from Eagle Road, with lower amounts of contamination being added by the fuel oil plume and/or contaminants which could be originating from nearby off-site sources. Contaminants in these samples were predominantly fuel oil and gasoline related components, along with some pesticide compounds. PCP was not detected in measurable levels in these samples with exception of SED-10 which had the highest level in the sediment sampling program. addition, sediment location SED-10 also had significant concentrations of dioxin and dibenzofuran isomers present. SED-10, as mentioned previously, was located adjacent to NWP in the drainage ditch north of the property and is influenced by surface water runoff and storm sewer pipe discharges from the property.

7.0 AIR QUALITY MONITORING INVESTIGATION

7.0 AIR QUALITY MONITORING INVESTIGATION

Air quality monitoring was conducted on three separate occasions during the RI phase at the Havertown PCP site. The air sampling and analysis work was performed by REWAI's air quality laboratory subcontractor U. S. Testing Corporation (USTC) of Hoboken, New Jersey. The purpose of the air quality monitoring was to provide an assessment of air quality in the immediate area of NWP during the RI.

The air quality monitoring comprised three sampling rounds, with each round consisting of 24-hour composite air samples collected over a period of 3 consecutive 8-hour days. The first round of air sampling was conducted between June 28, 1987 and June 30, 1987, prior to any invasive operations at the site in order to assess the existing site air quality. The second round of air sampling occurred between March 14, 1988 and March 16, 1988, during the RI groundwater sampling (Round #2) and hydrologic testing. The third round of air sampling was conducted between March 30, 1988 and April 1, 1988, at the conclusion of the RI field investigation to assess any adverse effects to the air quality as a result of the RI field investigation.

7.1 Air Sampling Locations

Air quality sampling locations were chosen in the field after the initial site reconnaissance was completed. Originally, as detailed in the Havertown PCP site RI/FS Site Operations Plan, the air sampling program was to utilize a three-zone monitoring area consisting of an upwind zone, a downwind zone, and the decontamination/support zone. However, after the initial site reconnaissance, it became obvious that distinct zones passed upon

wind direction could not be established on a short-term basis at this site due to the variable nature of the wind as observed Even if a prominent wind direction were evident at the Havertown PCP site, the short-term nature of this type of air quality sampling would make it very difficult to discern patterns that may occur as a result of this prominent wind direction. Because distinct wind zones could not be ascertained and due to the short-term nature of the air quality sampling, three locations were chosen by REWAI and used for all air quality sampling rounds which would allow the maximum quantity of "contaminants" emanating from NWP during the RI to be detected. It should also be noted that property owners' requests were considered when locating air quality sampling stations. monitoring station number one was located at the support zone near the office trailers and equipment decontamination pad. monitoring station number two was located along the north-fence line of NWP just west of the main gate, and air monitoring station number three was located near the southwest corner of NWP on the property of Continental Motors. Figure 7-1 depicts the air sampling locations.

7.2 Air Sampling Procedures

For each sampling phase, a 24-hour composite air sample was collected (eight-hour samples per day collected on three consecutive days). At each of the three air sampling locations, gas and particulate analyses were conducted. Portable sampling pumps powered by a gasoline generator were used to pull air through a Tenax tube at a flow rate of approximately 24 liters per hour. Sampling tubes and pumps were protected from the wind and weather by a shelter which allowed free transport of volatile organics from the earth. Sampling tubes were protected from the

breathing zone, approximately four feet above ground surface. After sampling for volatile organics was completed, the Tenax tubes were capped, placed in shipping containers, sealed with chain-of-custody tape, and placed in ice-filled storage boxes for transport to the analytical laboratory. Both actual sampling and laboratory analyses were performed by USTC.

Once the samples were received by USTC's laboratory, they were placed in a freezer to await desorption and subsequent analysis. Analysis of Tenax samples occurred within 48 hours of sample receipt using heated headspace desorption and sample analysis by Finnigan Gas Chromatography/Mass Spectrometry systems. Tenax tube samples were analyzed for the HSL parameters and oil and grease volatiles.

Particulates and aerosols were sampled at the same locations as the volatile organics; however, the sampling devices were not afforded the same shelter from wind and weather as the volatile organic samplers were. Particulate and aerosol sampling took place in a position three to four feet above the ground surface with the face of the filter facing up. A shelter which minimizes the amount of rain that can fall on the filter assembly was provided. The particulate samplers consisted of high-volume air sampling equipment with constant sampling rate controls and glass filter media. Upon completion of sampling, the filter media were placed in air-tight containers by USTC personnel and transported to the laboratory.

Particulate analyses were initiated by the laboratory within 48 hours of sample receipt, with sample filter media being sectioned into organic and inorganic fractions for respective analyses. The organic fraction was subjected 360 a fightinuous

extraction procedure according to EPA protocols with subsequent analysis for base neutral/acid extractable organics and pesticides. These analyses were performed by gas chromatography/mass spectrometry for base neutral/acid extractable organics and gas chromatography with ECD for pesticides.

The inorganic fraction was subjected to various preparation techniques including acid digestion and distillations. The extracts were analyzed for HSL metals and total cyanide.

Included with each round of samples was a duplicate sample collected at air monitoring station one. In addition, a check sample for volatile organics was also collected by exposing an open Tenax tube to ambient conditions at each sampling location. This tube was not connected to an air sampling pump. This sample serves as a check on pumped volatile organic samples because it has been observed that pumped volatile organic results are not always reliable.

7.3 Chemical Results

As shown in Appendix 2, various heavy metals—including all of the HSL metals except selenium, thallium, and cyanide—were detected in the three air quality sampling rounds. The concentrations of metals detected in each round were very similar—with sodium, calcium, and potassium being detected in the highest concentrations. Nickel was detected in similar concentrations at all sampling locations, as were copper and zinc. Chromium, copper, arsenic, and zinc are metals used in wood-treating solutions at NWP; therefore, their presence in the air samples may be the result of soil contamination at NWP from

these solutions and their subsequent entrainment, as dust, by wind.

Volatile organic compounds—such as benzene, toluene, xylene, and ethylbenzene—were detected in all of the samples from each round of sampling. Some unknown portion of these volatiles may be attributed to gasoline exhaust generated by heavy traffic in the vicinity of NWP. It should also be remembered that the air sampling pump was powered by a gasoline generator. Methylene chloride was found to be significantly lower in concentration in round #1 compared to rounds #2 and #3. It should be noted that acetone, which was detected in significant concentrations in rounds #2 and #3, and methylene chloride are common laboratory contaminants and it is questionable whether or not these chemicals are actually emanating from the site.

Acid extractables and base neutrals--such as bis(2-ethylhexyl) phthalate, butylbenzylphthalate, diethylexphthalate, di-n-butyl-phathlate, and dimethylphthalate--were also detected in the analysis. Diethylphthalate was detected in the highest concentrations for this group of chemicals, with the greatest concentrations detected during the second sampling round.

Samples were analyzed for pesticides and PCBs; however, these chemicals were undetected for all of the samples in each sampling round. Dioxins and dibenzofurans were not included in the chemical analysis and therefore no data is available.

All air sampling chemical data are included in Appendix 2 of this report. Comparison of air quality data from sampling rounds #1,

133

#2, and #3 exhibits data that are quite variable and show no distinct trends. It does not appear that RI activities at the Havertown PCP site had any discernible effects on air quality.

8.0 OTHER INVESTIGATIONS

San

AR300393

r.e. wright associates, inc.

8.0 OTHER INVESTIGATIONS

8.1 Previous Biota Investigations

During March 1975, DER performed a 24-hour in-stream biological assay of selected organisms in Naylors Run at the Havertown PCP site. The taxa counted included annelida, isopoda, trichoptera, ephemeroptera, coleoptera, amphipoda, diptera, and gastropoda. According to 1975 data, a depression of assayed organisms existed in Naylors Run downstream of the storm sewer outfall (suspected PCP discharge point).

A 1978 biota survey by DER revealed that Cobbs Creek and its tributaries had poor water quality; however, not all of the problems could be attributed to PCP in Naylors Run. The EPA emergency response team also performed an analysis of biota during an April 15, 1982, visit to obtain samples of air, water, and sediments (NUS, December 1983).

8.2 Microbe Investigations

Preliminary work was performed by Atlantic Research during 1978 on the use of in-situ biodegradation of oil contaminated by PCP in the soil at the Havertown PCP site. Their work showed that soil taken at the sampling points was "sterile," with respect to the normal microbiological community expected in soil. In addition, high bacteria levels were identified where the oil enters the stream, possibly indicating that these microorganisms may consume the PCP. Further, it was Atlantic Research's belief that these oil-consuming microorganisms were native to the groundwater (Brugger, April 25, 1978).

Experiments performed by Atlantic Research indicated that a bacterium, known as 041, exhibited healthy growth in PCP/oil contaminated soil. Previous studies had indicated that organisms can degrade PCP; however, no studies were performed to evaluate its ability to degrade the oil constitutents (Brugger, April 25, 1978).

During the RI drilling program, REWAI obtained samples of the surface soil near soil sampling location S-3 at the request of DER. These samples were then transferred to Dr. Carberry of the University of Delaware for use in her research on microbiological degradation of PCP. At this time, no further information is available concerning this separate investigation.

9.0 SUMMARY OF FINDINGS

9.0 SUMMARY OF FINDINGS

The following list summarizes the major findings identified during the Havertown PCP site Remedial Investigation. The findings have been grouped into general categories to allow for easier review.

9.1 General

- o Much of the original land surface has been altered extensively by cut-and-fill activities on the NWP, PCG, and the rear of properties along Rittenhouse Circle.
- o Improper well construction in some of the original monitoring wells at the site may be adversely influencing the groundwater chemistry results. These well conditions allow suspended sediments, possibly with contaminants adsorbed onto them, to enter the wells and thus the samples which can result in artificially elevated chemical concentrations being reported by the groundwater analyses.
- o Groundwater contamination is believed to exist beyond the present monitoring well network in both the bedrock and saprolite units.
- o It appears from the chemical results that monitoring wells which contain oil in them, such as R-2 and HAV-02, do not appear to have any pattern of increase in dissolved metals or volatile organics when compared to wells without oil in them. Therefore, alternate sources

for metals and VOAs are thought to be responsible for their presence in the groundwater.

o Pesticides detected in various sampling media are most likely associated with insecticide usage.

9.2 Air

- o Distinct wind direction zones (upwind, downwind) could not be established based upon short-term air sampling and the variable nature of the wind.
- o All HSL metals, which may be attributable to NWP, except selenium, thallium, and cyanide were detected in all three air sampling rounds.
- o Some portion of the VOA results for air sampling may be attributed to heavy traffic in the area.
- o BNA results for air sampling primarily consisted of phthalates, with di-ethylphthalate detected in the highest concentrations.
- o Air sampling results were highly variable and showed no distinct trends.

9.3 Hydrogeology

o Observations made during the drilling program indicated that the bedrock appears highly foliated under the NWP

plant and seems to become less foliated eastward under the PCG plant.

- o According to information obtained from a highly-weathered bedrock outcrop situated approximately 2,500 feet west of NWP, foliation in the exposure was found to be oriented north 50 to 64 degrees east and dipping 83 degrees northwest. Joints were also measured and were oriented north 68 degrees west dipping 39 degrees southwest and north 72 degrees west dipping 84 degrees southwest.
- o A review of available historical aerial photographs yielded no new information about fractures in the bedrock, as the area consisted primarily of densely developed urban land.
- o The saprolite unit has been separated into two divisions, an upper micaceous saprolite and a basal biotite-schist saprolite, based upon the unit's field-estimated mineral composition and inferred parent rock origin.
- The lack of complete geologic and well construction data for previously installed monitoring wells west of Eagle Road results in large uncertainties in providing a correlation with newly acquired information. The net result is a lack of knowledge in a critical portion of the study area where data are needed to ascertain the migration pathways for immiscible and dissolved contaminants in the groundwater system.

- From the hydraulic conductivity data, it appears that a 0 trend exists in the permeability of the unconsolidated and bedrock aguifer materials. Beneath NWP, the saturated unconsolidated materials tend to have a moderate to moderately high hydraulic conductivity, while under PCG, the saturated unconsolidated aquifer materials become less permeable, with hydraulic conductivities being moderately low. This trend is different in the bedrock aquifer, where materials under NWP are of moderate permeability and, under the southern portion of PCG, they are of moderately high to high permeability. Along the northern portion of PCG property, this trend does not exist, rather the bedrock hydraulic conductivity becomes moderately low. From this information, it would appear that a significant change in hydraulic conductivity exists in the subsurface between NWP and This change in hydraulic conductivity is believed to modify the flow characteristics of groundwater in the area.
- o The geometric mean of horizontal hydraulic conductivity across the site is 2.94 ft/day.
- o It appears that the surficial fill unit is completely unsaturated by groundwater.
- o The saprolite units vary from partially to completely saturated by groundwater.
- o The bedrock is completely saturated across the site and there are no apparent continuous confining layers.

- o The flow of groundwater is east to east-southeast across the study area.
- o Groundwater has a higher horizontal hydraulic gradient under NWP and Rittenhouse Circle areas (0.021 and 0.030 respectively) and a lower hydraulic gradient (0.007) under the Swiss Farm Market and PCG building. The average horizontal gradient across the site has been estimated at 0.019.
- o The overall vertical groundwater gradients found at the site were small, ranging from 0.001 to 0.028, compared to the horizontal gradients. The effect of the vertical potential on groundwater flow, however, can be considerable at some locations, namely wells CW-1, CW-5, and CW-6.
- o The changes in groundwater flow gradients are believed to be attributable to changes in permeability of the water table aquifer, indicating that the aquifer is an isotropic and heterogeneous.
- o The estimated average groundwater flow velocity was calculated at 0.27 ft/day, using an estimated effective porosity of 21 percent.
- An estimate of the amount of groundwater discharging from the site through a given cross-sectional area (see text) was calculated using Darcy's Law. Given the assumptions of Darcy's Law (see text), the flow rate was estimated at 13,600 gpd. No estimates of seasonal variations of this flow rate could be made from data obtained during this investigation.

9.4 <u>Soil</u>

- o Due to the nature of the fill material at the NWP plant--consisting largely of tightly compacted sand, gravel, slag, and railroad ties--hand augering is not a viable technique recommended for any future soil sampling at this location.
- NWP are associated with petroleum hydrocarbons, probably fuel oil, and PCP. Secondary contamination in the soil consists of chlorinated dioxins and dibenzofurans; heavy metals consisting of arsenic, chromium, copper, lead, and zinc; and solvent-related compounds, including total xylenes, ethylbenzene, toluene, benzene, 4-methyl-2-pentanone, chloromethane, tetrachloroethene, bromomethane, and trichloroethene.
- o Because of the constraints of the soil sampling program at the NWP plant, interpretations regarding contaminant concentration zones could not be made with reliability. Accordingly, it is not believed that the full range of contamination was assessed by this soil sampling program.
- o The highest concentration of PCP was found at soil sampling location S-5 (storage tank area), at a level of 4,500,000 ug/kg. This sample location also had the greatest concentration of total BNAs (6,195,100 ug/kg).

- o PCBs (1,260) were only found at soil sample location S-2 (northern building face of the NWP plant); there the PCB concentrations was 1,600 ug/kg.
- o Cyanide was not detected in any of the soil samples.
- o Concentrations of oil and grease were detected in every soil sample, with the highest concentration, 560,000 mg/kg, detected in soil sample S-5. Soil sample S-5 was collected in the chemical storage tank area of NWP.
- o Chlorinated tetra-through octa-isomers of dioxin and dibenzofuran were detected at various concentrations at each of the soil sampling locations. The octa-dioxin isomer was detected in the highest concentrations and made up the majority of the total dioxin concentration found.
- o The greatest levels of total dioxin and dibenzofuran isomers were found at soil sample location S-5 at concentrations of 39,318 ppb and 15,620.9 ppb respectively.
- o In general, the highest concentration of HSL chemicals and dioxin/dibenzofuran isomers was found at soil sampling location S-5, in the storage tank area of NWP.

9.5 Groundwater

- Decause of the variety of sampling methods which were necessary during the preliminary sampling round (Round #1), some variation in the analytical results is expected to have been introduced to the data. However, no quantification of this variance is available.
- o Water-soluble chemical contaminants have been identified in the groundwater at the Havertown PCP site. The contaminants apparently originate from sources of fuel/gasoline oil components which may occur from the subsurface oil plume, or from nearby off-site sources.
- The solvent/degreaser constituents were not reported in use in any past or present wood-treating operation at NWP and they apparently extend beyond the present groundwater monitoring network. The highest concentrations of solvent/degreaser constituents in the groundwater appear to be located near one of the more upgradient well clusters, the CW-1 series. One or more source areas for solvent/degreaser constituents may exist west (upgradient) of the study area.
- o The primary isomers of dioxin found in the groundwater samples were octa-, hepta-, and some hexa-chlorinated dibenzo-p-dioxin.
- o Dioxin in the groundwater appears to only be present in the shallow and in some intermediate depth cluster wells, which are geologically situated in the saprolite units.

Dioxin was not detected in the newly installed bedrock monitoring wells.

- o Dioxin contamination in the groundwater extends downgradient of the 36-inch storm sewer behind PCG and past the present monitoring well network (HAV-05 and HAV-07).
- po PCP is the most frequently found contaminant in groundwater at the site.
- o Wells with oil in them do not necessarily have the highest amounts of dissolved concentrations of dioxin and/or dibenzofuran in the groundwater.

9.6 Subsurface Oil

- o The specific gravity of the floating subsurface contaminated oil was measured as 0.897.
- The measured thickness of oil in wells at the Havertown PCP site does not in itself reflect the extent of oil contamination on the surface of the water table. Rather, the potential for free-floating immiscible oil, which may be present in the subsurface, is significantly less (estimated at 6,000 gallons) than the 350,000- to 600,000-gallon estimate from previous investigations.
- o The migration of the subsurface fuel oil plume may be inhibited near Eagle Road, between NWP and PCG. The cause of this inhibition is not known; however, a stratigraphic oil trap, a structural oil ptrap, and/or a

lithologic change affecting permeability may be responsible.

o A sample of the subsurface fuel oil was analyzed by EPA for dioxin and dibenzofuran isomers. The analysis revealed that the total dioxin concentration was 49,779 ppt and the total chlorinated dibenzofuran concentration was 46,732.1 ppt. No analysis for HSL chemicals was run on the fuel oil sample during this RI.

9.7 Surface Water

- o Most surface water runoff from NWP and PCG properties discharge into Naylors Run.
- o From the surface water parameters of dissolved oxygen, pH, and specific conductance, it is apparent that the water discharged by the storm sewer pipe at surface water sampling location SW-5 apparently adversely affects the water quality in Naylors Run at this location. The dissolved oxygen and pH were low (3.7 mg/l and 6.10 respectively) and the specific conductance (583 umhos/cm at 25°C) significantly elevated.
- o Several HSL metals--zinc, cobalt, copper, lead, silver, and thallium--were found dissolved in the surface waters of Naylors Run. Of these, the presence of zinc and copper may possibly be linked to NWP because these metals are constituents of water-soluble wood treatment solutions (CZC and CCA) used in the present wood treatment process at the plant. No information is

available at this time to indicate that these metals were part of past NWP operations.

- The greatest concentration of total dissolved selected metals, consisting of arsenic, cadmium, chromium, copper, lead, and zinc, was detected at surface water location SW-1. From the data on selected dissolved metals concentrations, there does not appear to be a particular pattern of metals distribution in the surface water samples collected from Naylors Run.
- volatile organic aromatic (VOAs) chemicals including benzene, toluene, xylene, 1,1,1-trichloroethane, and trichloroethene were detected only in those surface water samples collected downstream (SW-1 to SW-5) of the storm water pipe. These compounds were not detected in samples which were collected above the storm sewer outfall (SW-6 to SW-10). The only concentrations of VOAs, which were identified in samples above the storm sewer pipe (SW-5 SW-10), were chloroform and bromodichloromethane.
- o The presence of VOAs in samples SW-6 through SW-10 may be indicates a source or sources other than the subsurface fuel oil contamination.
- o PCP was consistently detected in surface water samples below the storm sewer pipe at elevated concentrations. However, because of relatively high analysis detection limits on samples taken above the storm water outlet (SW-6 SW-10), the presence of PCP at these locations should not be ruled out.

- o Concentrations of BNA compounds such as acenaphthene, anthracene, fluorene, phenanthrene, 2-methyl naphthalene, and 2,4-dichlorophenol were detected in the surface water samples. BNAs are believed to be indicative of the fuel oil contamination from NWP.
- o Pesticides and PCBs were not found above detection limits in the surface water samples.
- o Total dioxin concentrations ranged from below detection limits to 20.3 ppt in the surface water samples. Surface water samples SW-1 through SW-5, with the exception of SW-3, contained elevated levels of dioxin. These locations are downstream of the storm sewer pipe.
- o Total dibenzofuran concentrations ranged from below detection levels to 13.9 ppt. Like dioxin, dibenzofuran was only found above detection levels in surface water samples SW-1 through SW-5, with the exclusion of SW-3.

9.8 Sediment

Sediment samples contained comparatively greater concentrations of the selected dissolved metals of arsenic, chromium, copper, and lead than did the surface water samples, probably because of adsorption and concentration. The presence of these metals, with the exception of lead, might be explained by migration or transport of these metals from the NWP plant site into Naylors Run. Currently, wood-treating operations at NWP use metal-salt solutions which are water soluble to preserve wood products. No information on the presence

of metals in the treating solutions from past NWP operations is available at this time.

- volas were not found above detection limits in the sediment samples. It is possible that the VOAs were not detected either because the sediment samples were not collected in septum-sealed VOA bottles, because environmental conditions allowed volatilization of some of the VOAs present in the samples, or because VOAs do not adsorb onto sediment as readily as metal or BNA compounds.
- o Sediment sample SED-10, located in the drainage ditch just north of the NWP plant site, had the highest concentration of PCP detected in the sediment samples. The high PCP levels at SED-10 are believed to result from the combined input of surface runoff from NWP and discharge from a storm sewer pipe which routes surface water runoff from NWP.
- o PCP was found above detection limits in sediment samples SED-1 through SED-5, which may be the result of contaminants discharging from the storm sewer pipe. PCP was not found above detection limits in sediment samples above the storm sewer outlet, SED-6 through SED-9; however, because of high detection limits at these locations, one cannot rule out the presence of elevated levels of PCP at these locations.

- o PCP concentrations in the sediments appear to decrease downstream of the concrete headwall (HW #1 on Plate 1) of Naylors Run east of Eagle Road.
- o Significantly greater numbers of base neutral and acid extractable compounds were detected in the sediments of Naylors Run than in the surface waters. Thus the contaminants appear to be adsorbing onto the sediments and concentrating in Naylors Run, rather than remaining in the surface waters.
- o Only three pesticides, delta-BHC, chlordane, and dieldrin, were identified in the sediments. It would appear that, at least for chlordane, the source of the contamination is located above the covered pipe section of Naylors Run, somewhere upstream of location SED-6. The source for the pesticides is believed to be unrelated to the subsurface fuel oil contamination.
- o No PCBs were found in the sediment samples above detection limits.
- o Cyanide was only found in sediment sample SED-4 at a concentration of 1.3 mg/kg.
- o High concentrations of oil and grease were detected above the storm sewer outfall (SED-5), which indicates that there may be a large portion of dissolved oil and grease entering the stream from this area. Sources for these concentrations could stem from surface water runoff from nearby roadways and parking lots, nearby service ARSOU4 10

stations, or contaminated groundwater or fuel oil entering the stream here.

o Dioxin and dibenzofuran concentrations were detected at relatively low levels in the sediments, except at location SED-10, where significantly elevated levels were found. Sample SED-10 was taken from the drainage ditch north of the NWP plant site, next to the storm water discharge pipe outlet which runs along the fence line between NWP and Swiss Farm Markets.

10.0 REFERENCES

10.0 REFERENCES

- Bascom, F. and Stose, G. W., 1932, Coatesville-West Chester Folio, Geologic Atlas of the United States, No. 233, United States Geological Survey.
- Brugger, John E., April 25, 1978, EPA Oil and Hazardous Materials Spills Branch correspondence with Howard Lamp'l EPA Environmental Emergency Response Branch, Region III.
- Dackombe, R. V., and V. Gardiner, 1983, Geomorphological Field

 Manual, George Allen and Unwin (Publishers) Ltd., London, UK.
- Driscoll, Fletcher G., 1986, <u>Groundwater and Wells</u>, 2nd Ed., Johnson Division, St. Paul, Minnesota.
- Fetter, C. W., Jr., 1980, <u>Applied Hydrogeology</u>, Charles E. Merrill Publishing Company, Columbus, Ohio.
- Freeze, R. Allan, and John A. Cherry, 1979, Groundwater, PrenticeHall, Inc., Englewood Cliffs, NJ.
- Hall, C. E., 1885, Field Notes in Delaware County, 2nd Geological Survey of Pennsylvania Report of Progress C5 Part 1, Harrisburg.
- Hall, George M., 1967, Groundwater in Southeast Pennsylvania, Pennsylvania Geologic Survey Fourth Series Bulletin W-2.
- McKinstry, H., 1961, Structure of the Glenarm Series in Chester County, Pennsylvania, Geological Society of America Bulletin, Volume 72, pp. 557-578.

- Morris, D. A., and A. J. Johnson, 1967, Summary of Hydrologic and Physical Properties of Rock and Soil Materials, as Analyzed by the Hydrologic Laboratory of the U. S. Geological Survey, 1948-1960, U. S. Geological Survey Water-Supply Paper 1839-D, 42 pp.
- NUS Corporation, December 1983, "Remedial Action Master Plan, Havertown PCP Site," NUS Project Number 0701.71.
- OHS Hazardline; Information concerning dioxin, fuel oil, pentachlorophenol, copper, chromium, arsenic and zinc; Occupational Health Services, Inc.
- Pennsylvania Department of Environmental Resources; 1983, State Water Plan, Subbasin 3, Lower Delaware River; SWP-4; prepared by Office of Resources Management, Bureau of Water Resources Management.
- Pettyjohn, W. A., D. C. Kent, T. A. Prickett, H. E. LeGrand, and F. E. Witz, 1982, "Methods for the Prediction of Leachate Plume Migration and Mixing," U. S. EPA Municipal Environmental Research Laboratory, Cincinnati, OH.
- Poth, Charles W., 1968, Hydrology of the Metamorphic and Igneous Rocks of Central Chester County, Pennsylvania, Water Resources Report 25, Pennsylvania Department of Environmental Resources.
- Rappe, Christoffer, Gangadhar Choudhary and Lawrence H. Keith, 1987, Chlorinated Dioxins and Dibenzofurans in Perspective, Lewis Publishers, Inc.
- Thompson, Debora B., 1987, Groundwater, March April, NWWA, pp. 212-218.

- Todd, Alan S., 1984, Evaluation of National Wood Preservation, Inc. Facilities, Haverford Township, Stewart-Todd Associates, Inc.
- Todd, David Keith, 1980, <u>Groundwater Hydrology</u> 2nd Ed., University of California, Berkeley and David Keith Todd Consulting Engineers, Inc., John Wiley & Sons, Inc.
- United States Department of Agriculture, 1963, Delaware County and Chester County Soil Survey.
- United States Environmental Protection Agency, 1976, Quality Criteria for Water.
- United States Department of the Interior Bureau of Reclamation, 1985, Groundwater Manual, pp. 249-264, U. S. Gov't printing office, Denver.
- Windholz, Martha, editor; 1976, The Merck Index, Ninth Edition; Merck, Sharp and Dohme Ltd.